Logo-ajcmi

Indexing Information

 

Listed in:

 

Follower  of

 

Officially associated with

 Iranian Society of Microbiology

  Iranian Society of Microbiology

Brucellosis Research Center,UMSHA

Avicenna J Clin Microbiol Infect. 2018;5(4): 86-90. doi: 10.34172/ajcmi.2018.18

Research Article

Prevalence of SHV, TEM, CTX-M and OXA-48 β-Lactamase Genes in Clinical Isolates of Pseudomonas aeruginosa in Bandar-Abbas, Iran

Maryam Bahrami 1 ORCID, Maryam Mmohammadi-Sichani 1 * ORCID, Vajihe Karbasizadeh 2 ORCID

Cited by CrossRef: 9


1- Poursina S, Ahmadi M, Fazeli F, Ariaii P. Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. Veterinary Medicine & Sci. 2023;9(1):315 [Crossref]
2- Abdelraheem W, Ismail D, Hammad S. Prevalence of blaOXA-48 and other carbapenemase encoding genes among carbapenem-resistant Pseudomonas aeruginosa clinical isolates in Egypt. BMC Infect Dis. 2024;24(1) [Crossref]
3- Mohammadnezhad N, Nazari M, Mostafavi S, Sahebkar A, Khademi F. Phenotypic and genotypic identification of class C and D β‐lactamases in clinical isolates of Pseudomonas aeruginosa: a cross‐sectional study. Health Science Reports. 2024;7(9) [Crossref]
4- Mahdavi S, Sadeghi M, Shokri R, Sadegh B. The Role of Bacteriophages as Important Reservoirs of Extended-Spectrum Beta-Lactamase Genes in Azerbaijan Hospitals. Microbial Drug Resistance. 2022;28(4):436 [Crossref]
5- Kadivarian S, Hosseinabadi S, Abiri R, Kooti S, Alvandi A. Frequency of Extended-Spectrum Beta-Lactamase-producing Genes associated in gram-negative bacteria isolated from infectious patients in Kermanshah (2019-2020). Iran J Med Microbiol. 2023;17(1):39 [Crossref]
6- Ghahari N, Mirzaei A, Esfahani B, Moghim S. Clonal rep-PCR patterns of Pseudomonas aeruginosa in Diabetic Foot Ulcers, Iran. IJID Regions. 2025;:100557 [Crossref]
7- Goh J, Tan L, Law J, Khaw K, Ab Mutalib N, He Y, Goh B, Chan K, Lee L, Letchumanan V. Insights into Carbapenem Resistance in Vibrio Species: Current Status and Future Perspectives. IJMS. 2022;23(20):12486 [Crossref]
8- Rezaloo M, Motalebi A, Mashak Z, Anvar A, Smaoui S. Prevalence, Antimicrobial Resistance, and Molecular Description of Pseudomonas aeruginosa Isolated from Meat and Meat Products. Journal of Food Quality. 2022;2022:1 [Crossref]
9- Rajabi A, Farajzadeh D, Dehghanzadeh R, Aslani H, Mousavi S, Mosaferi M, Dehghani M, Asghari F. Characterization of antibiotic resistance genes and bacteria in a municipal water resource recovery facility. Water Environment Research. 2022;94(7) [Crossref]
10- Islam R, Ferdous F, Hoque M, Asif N, Rana M, Siddique M, Rahman M, Jomehzadeh N. Characterization of β-lactamase and virulence genes in Pseudomonas aeruginosa isolated from clinical, environmental and poultry sources in Bangladesh. PLoS ONE. 2024;19(4):e0296542 [Crossref]
11- Hosu M, Vasaikar S, Okuthe G, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep. 2021;11(1) [Crossref]
12- Hashemi A, Nakhaei Moghaddam M, Forghanifard M, Yousefi E. Detection of blaOXA-10 and blaOXA-48 Genes in Pseudomonas aeruginosa Clinical Isolates by Multiplex PCR. JoMMID. 2021;9(3):142 [Crossref]
13- Rahimi E, Asgari A, Azimi T, Soleiman-Meigooni S. Molecular Detection of Carbapenemases and Extended-Spectrum β-Lactamases-Encoding Genes in Clinical Isolates of Pseudomonas aeruginosa in Iran. Jundishapur J Microbiol. 2021;14(7) [Crossref]