
Background 
Avian influenza (AI) is one of the most important viral 
and respiratory diseases in the poultry industry, which 
causes annual economic losses all over the world. The 
avian influenza virus (AIV) belongs to the Orthomyxovirus 
family. One of the most prominent properties of this virus 
is the mutation and recombination that occur by slow and 
continuous genomic and antigenic changes that have led 
to the formation of different subtypes (1). In addition, 
influenza A can cause acute respiratory disease in birds and 
some mammals such as humans. Further, the viruses of this 
type of influenza infecting poultry can be divided into two 
distinct groups based on their biological and virological 
components and the ability to cause disease. Furthermore, 
the very virulent viruses cause highly pathogenic avian 
influenza (HPAI), in which mortality may be as high as 
100%. These viruses have been restricted to H5 and H7 
subtypes although not all viruses of these subtypes cause 
HPAI. Moreover, all other viruses cause an extremely milder, 

primarily respiratory disease, which may be exacerbated by 
other infections or environmental factors (2). The H9N2 
strain of AIV has spread to Iran since June 1998. Although 
the pathogenicity of this virus is determined according 
to the biological test and the sequencing of the surface 
antigen of hemagglutinin and classified to low pathogenic 
AIV, it has caused various economic losses to the poultry 
industry since its introduction to Iran due to the high 
mortality and reductions in production (3). The genome 
of the influenza virus is fragmented and consists of eight 
distinct monocular RNA molecules with negative polarity 
(1). According to (4), studies on the antigenic diversity of 
this virus in Iran have focused on shifted antigen changes 
in both 4 and 6 RNA sequences that code the surface 
antigens of hemagglutinin and neuraminidase. Thus, little 
information is available about the antigenic diversity of 
other RNAs encoding other proteins. The matrix gene (M) 
of the influenza virus consists of 1027 nucleotides, which 
include two subunits of M1 (nucleotide sequences 26-
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Abstract
Background: Influenza is a main viral disease in poultry production that causes various annual economic losses 
to the poultry production industry. Avian influenza virus (AIV) is susceptible to antigenic changes, and the 
genome of this virus codes different proteins some of which have more biological properties. The matrix (M) 
protein is one of these proteins that plays a role in the immunization and pathogenesis of the virus. Therefore, 
the evaluation of molecular characteristics and changes in the influenza gene can provide a new horizon 
for further genomic studies. Accordingly, in this study, the molecular characteristics of AI H9N2 strains were 
compared with those of other reference strains in the world gene bank by determining their M gene sequence.
Methods: In this regard, 4 strains of AIV (H9N2) were selected for the analysis of the M gene sequence. The 
polymerase chain reaction product was sequenced after its purification from the gel and the amplification of the 
M gene. Finally, the nucleotide sequence of these strains and other reference strains were aligned and analyzed 
by MegAlign software using the Clustal W method. 
Results: The results indicated that the M gene sequences of AIVs belonging to the last decade were highly 
similar to each other and other reference strains in special regions such as the ionic gate and the cleavage site. 
Based on the M sequence, 3 strains appeared to be resistant to amantadine. These viruses in the epitope regions 
showed a high similarity to the highly pathogenic avian influenza (HPAI) Hong Kong H5N1 strain. 
Conclusions: In general, it seems that the sequence of the M gene in Iranian H9N2 strains belonging to the last 
decade is relatively constant although the continuous monitoring of changes in various genes of the influenza 
virus is necessary.
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784) and M2 (26-51 and 740-1007). These components 
contain 252 and 97 amino acids, respectively. Considering 
that the M protein involves (coded by RNA part 7) in the 
mechanism of the immunization and pathogenicity of 
AIV (5,6), the evaluation of molecular characteristics and 
changes in this gene can draw a new horizon for future 
genomic studies. In this regard, the rapid and sensitive 
real-time polymerase chain reaction (RT-PCR) method 
was utilized to detect AIV infection based on M gene 
amplification. More precisely, in this study, the molecular 
characteristics of AI H9N2 strains were compared with 
those of other reference strains in the world gene bank by 
identifying their M gene sequence.

Materials and Methods
To this end, four allantoic fluids of H9N2 AIV strains 
from a previous study were used to amplify the M gene (2). 
The initial tracheal and lung samples were collected from 
dead broiler chickens with severe respiratory symptoms 
and belonging to 2014 and 2015 from Isfahan province. 
Then, the RNA was extracted from the allantoic fluid of 
specific pathogen-free embryonated chicken eggs using the 
RNA purification kit (Roche, Germany). Next, the RT-
PCR was performed to amplify a fragment of the AIV M 
gene. The applied primer in this study is described in Table 
1. The length of the amplified fragment was about 1027 
bp of the M gene (7).

In addition, the RT-PCR was conducted using 10 μL 
RT-PCR (with magnesium chloride), 2.5 μL dithiothreitol,  
1 μL deoxyribonucleotide triphosphate, 2 μL forward 
primer, 2 μL reverse primer (10 pmol each primer), 1 μL 
enzyme mix, 4 μL template RNA, and sterilized distilled 
water (27.5 μL) in the final volume of 50 μL, followed by 
the reverse transcription of RNA.

The cDNA synthesis was done at 45°C for 45 minutes, 
primary denaturation at 94°C for 3 minutes, denaturation 
at 94°C for 60 seconds, annealing at 48°C for 60 seconds, 
extension at 68°C for 60 seconds, and the final extension 
at 68°C for 10 minutes. In this study, the process of 
denaturation, annealing, and extension was repeated for 
35 cycles.

Further, a 100-bp marker was prepared from Fermentas 
Company (Germany), and the final amplified product was 
detected and analyzed by electrophoresis in 1% agarose gel 
stained with ethidium bromide.

The glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as the housekeeping gene. 
Furthermore, a pair of primers was synthesized by Bioneer 
(South Korea) for the amplification of the GAPDH gene. 

The primer sequences for chicken GAPDH were: forward 
primer, 5’-GGTGGTGCTAAGCGTGTTA-3’; reverse 
primer, 5’-CCCTCCACAATGCCAA-3’, resulting in an 
amplified product of 179 bp (Accession No. X01578) 
according to (8).

Then, the PCR product belonging to the H9N2 strains 
of AIV was sequenced to analyze the nucleotide and 
amino acid sequences of the M gene. For this purpose, 
PCR products were purified with a commercial DNA 
purification kit (Roche, Germany) from the agarose gel 
according to the manufacturer’s instruction. The extracted 
product together with the general primers of the AIV and 
the specific applied M gene in PCR were sent to MWG-
Biotech Company (Germany). Next, strain sequencing was 
performed directly (Direct automated cycle sequencing) 
and bilaterally (9).

To analyze the sequence, first, the nucleotide sequence of 
the M gene was compared to the sequence of other viruses 
registered in the gene bank using the Basic Local Alignment 
Search Tool (BLAST) in the EMBL/GenBank gene 
(WWW.NCBI.nlm.nih.gov/BLAST). After identifying 
the similarity of sequences with other gene bank viruses, 
reference strains were selected for further analysis. The 
sequence of the strains was analyzed with the DNAStar 
software package (DNAStar Inc., Madison, WI, USA) and 
then edited using the Edit Sequence software to match 
the length of the sequences of all strains. Next, nucleotide 
sequences were translated into the corresponding amino 
acid sequence in order to increase validity. Eventually, 
nucleotide and amino acid sequences were aligned and 
analyzed by MegAlign software (version 5) using the 
Clustal W method (9).

Results
The comparison of nucleotide and amino acid sequences 
of recent H9N2 AIV strains (i.e., IR-203, IR-205, IR-
208, and IR-209) indicated that these strains most closely 
correlate with the previous AIV strains of Iran and there is 
more than 90% similarity in each case. In addition, recent 
strains are most similar to strain A/Parakeet/Chib /1/97 
(H9N2), which varies from 96 to 99%.

Additionally, the analysis of the amino acid sequence 
in epitope regions located at the M1 protein suggested 
that the similarity of recent strains in the epitope regions 
of the M1 protein is above 96%. This similarity reaches 
100% in the epitope areas 2 and 3 (141-89). Further, the 
amino acid sequences of 101-105, as one of the epitope 
regions located at M1 protein, in all studied sequences are 
101-KKLKR-105. In addition, glutamine-methionine is 

Table 1. The Characteristics of the Applied Primer for Amplifying the M Gene of Avian Influenza

Primer Name Primer Sequence Start-Stop
Annealing 

Temperature ( ̊ C)
Accession 
Number

Amplified Fragment 
Length (bp)

Target Gene

Bm-M-1 (F) F:5’AGCAAAAGCAGGTAG3’ 1-15 45.50
NC-007367.1 1027 M

Bm-M-1027R (R) R:5’AGTAGAAACAAGGTAGTTTTT3’ 1027-1007 50.50

http://WWW.NCBI.nlm.nih.gov/BLAST
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the cleavage site in the M1 protein in all examined strains 
at positions 164 and 165. The deduced amino acid is 
constant and histidine in the membrane portion (TM) 
of the M2 protein at position 37 and all studied strains, 
respectively.

Moreover, comparing the amino acid sequence of recent 
strains in positions 26, 27, 30, 31, and 34 of the M2 protein 
(determining the resistance to amantadine) showed that 
three strains at position 31 had only S31N replacement 
(serine to asparagine substitution), the related data of 
which are depicted in Figure 1. Likewise, the nucleotide 
sequence of these three strains in the position of 93 M2 
genes suggested the thiamine to cytosine substitution 
(Figure 2). The condition of recent Iranian AIVs in the 
phylogenetic tree is displayed in Figure 3.

Discussion
The analysis of nucleotide and amino acid sequences of the 
M gene in the H9N2 strains of the recent study revealed 
a high genomic relationship between these sequences and 
other previous Iranian H9N2 strains detected in recent 
decades. This homology is in any case above 90%. In 
their study, Ebrahimi et al reported the homology of the 
complete sequencing related to the M2 strain of Iranian 
H9N2 strains with other H9 and H5 strains obtained 
from different hosts and geographic regions between 92% 
and 98%. This similarity has been reported at the amino 
acid sequencing level between 97% and 100% (10). 
However, this high affinity represents the common source 
of H9N2 strains in Iran although a slight discrepancy 
between the strains of H9N2 in Iran leads to the formation 
of subcategories that cause the distribution of Iranian 
H9N2 strains among the other strains of H9N2 in the 
phylogenetic tree. These minor differences indicate that 

Figure 1. The Alignment of Deduced Amino Acid Sequence of the 
M2 Protein of Four H9N2 AIVs (IR203-, IR205-, IR208- and IR209-) 
in Comparison to other Reference Strains in World Gene Bank.

Figure 2. The Alignment of M2 Gene Sequence of H9N2 AIVs 
(IR203-, IR205-, IR208- and IR209-) Compared to Other Strains 
Registered in the World Gene Bank 

Figure 3. The Phylogenic Tree of the Analyzed AIVs (IR203-, IR205-, IR208- and IR209-) Compared to the Strains Registered in World Gene 
Bank
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segment 7 of the H9N2 virus does not remain constant 
over time and may develop gradually. Further, branch 
lengths show the number of mutations that have occurred 
in the evolutionary time between the lineages. According 
to the report on the consolidation of segment 7 of the 
human influenza virus (11), in the process of an antigen 
shift from the H1N1 to the H2N2 strain and then the 
emergence of H3N2 (12), it seems that the probability of 
changes in the segment 7 of AIV is greater with the passage 
of time compared to human influenza.

The investigation of epitope regions on the M1 protein 
represented that the homology related to the amino acid 
sequence of the M1 protein of recent strains in epitope 
regions (i.e., 1, 2, and 3 regions) is 96%-100%. This 
homology in the cleavage site, the ion channel gate, the 
Zn binding site, and the nuclear localization sequence 
is 100%, which is identical with other reference strains. 
Therefore, it seems that no changes have been made in the 
functional and biological characteristics of these viruses 
during the last decade.

The comparison of recent strains with other strains of 
H9N2 from different countries demonstrates that the 
M gene sequence of the Iranian H9N2 strains of AIV is 
most similar to the Japanese strain of H9N2 originating 
from Pakistan (A/parakeet/Chiba/1/97(H9N2)). The 
high affinity of Iranian H9N2 strains to this isolate from 
Pakistan can help discover the origin of H9N2 strains in 
Iran. Further, a previous study estimated Pakistan as the 
origin of the H9N2 strain of Iran (4).

Recent H9N2 strains, in addition to being extremely 
similar to previous Iranian strains, are highly similar to the 
Hong Kong H5N1 strain (A/chicken/Hong Kong/728/97 
(H5N1)). Unlike other analyzed strains, most recent strains 
have 100% similarity to the Hong Kong strains of H5N1 
in the epitope area of the M1 protein. The biological and 
functional role of these epitopes is not well known and 
the pathogenicity of influenza viruses is affected by various 
factors. Accordingly, recent viruses may not have high 
pathogenicity in humans although there is the possibility 
of this ability due to high mutations. According to the 
previous reports, the probability of the Iranian H9N2 
viruses becoming a highly pathogenic virus with the ability 
to transfer to humans is not far behind given the sequence 
of hemagglutinin and neuraminidase glycoproteins on 
the occurrence of Iranian H9N2 AIVs in the Hong Kong 
human influenza group (13).

Amantadine is an antiviral agent that specifically inhibits 
influenza A virus replication. It is sufficiently proved that 
amantadine and amantadine-derived compounds can block 
the proton channel formed by the M2 protein and prevent 
the required pH changes for the virus uncoating process (5). 
Resistance to amantadine occurs through a point mutation 
in each of the amino acid positions 26, 27, 30, and 31 or 
34 of the M2 protein (14). Among the above-mentioned 
situations, mutation at position 31 was reported more 

than other situations among resistant strains (15,16). The 
analysis of recent AIV strains showed that three out of four 
strains had S31N substitution (serine to asparagine). In the 
other important determinants of resistance to amantadine, 
there is no change in the amino acid sequence of the strains. 
Therefore, it seems that one of these four strains is sensitive 
to amantadine while the remaining ones are resistant. In 
a previous study, Aghahossein Fanni et al reported the 
presence of amantadine-resistance among AIVs detected in 
2007-2009 while the strains detected in 1998, 1999, and 
2006 did not have resistance alternatives (17). Similarly, 
Yavarian et al found an increase in amantadine resistance, 
due to S31N mutation in the M2 channel protein, among 
human influenza H3N2 strains circulating in Iran during 
2005-2007 (18). Given that the number of samples for 
checking the resistance to amantadine is insufficient, 
judgments about this subject in the H9N2 viruses of Iran 
need further investigation.

Conclusions
Although minor differences are observed in the M gene 
sequence, there may be more differences in other genes in 
AIV genes, which requires investigating several genes in the 
virus simultaneously. However, minor variations in the M 
gene provide the conditions for using this gene in designing 
the primer and the production of recombinant vaccines. In 
general, it is suggested that human and AIVs originated 
from commercial chickens, migratory and aquatic birds, be 
used to analyze the M gene and to investigate amantadine 
resistance. 
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