
Figure S1. Arrangement of final anti-SARS-CoV-2 MEV with its various components

Table S1. Physicochemical properties of final construct

Parameter	Predicted value
Number of amino acids	571
Molecular weight	65440.68 Da
Formula	C ₃₀₁₃ H ₄₅₆₃ N ₇₉₇ O ₇₉₅ S ₂₄
Theoretical isoelectric point (pI)	9.79
Total number of negatively charged residues (Asp + Glu)	31
Total number of positively charged residues (Arg + Lys)	92
Half-life	30 hours (mammalian reticulocytes, <i>in vitro</i>). >20 hours (yeast, <i>in-vivo</i>) >10 hours (Escherichia coli, <i>in-vivo</i>)
Instability index (II)	34.80 (stable)
Aliphatic index	65.46
Grand average of hydropathicity (GRAVY)	-0.478

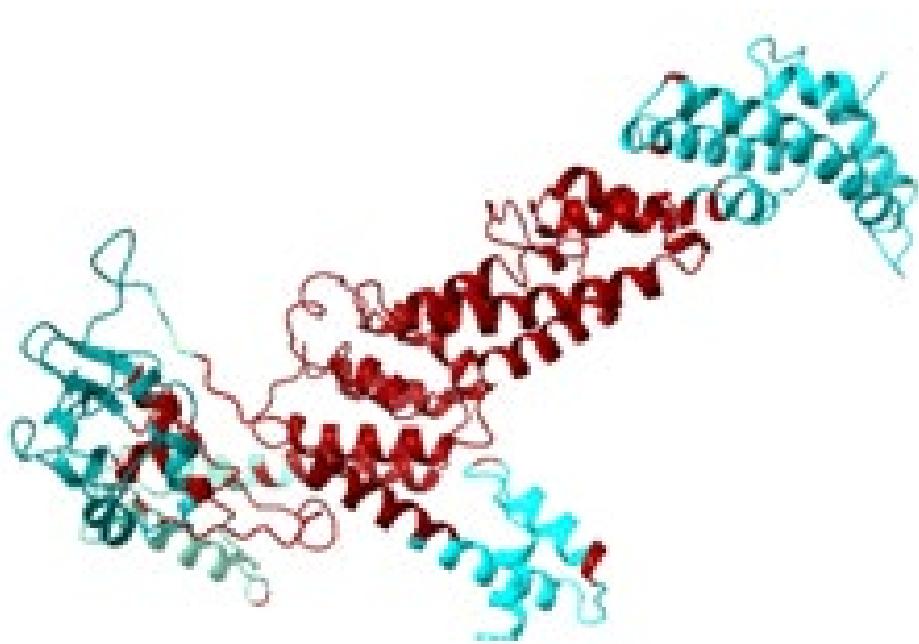

Figure S2. Prediction of possible 2D structure of anti-SARS-CoV-2 MEV using PSIPRED server


Figure S3. Modeling, refinement and validation of 3D structure of MEV. (a) the modelled structure by I-TASSER; (b) the selected refined model by GalaxyRefine server; (c) Ramachandran plot analysis by PROCHECK tool; the quality assessment of the MEV model by (d) the z-score plot; and (e) ERRAT tool, respectively

Table S2. Predicted conformational epitopes in the vaccine construct

No.	Residues	Number of residues	Score
1	A521, R524, A525, K526, K527, G528, V529, S530, I531, C532, S533, T534, M535, T536, N537, R538, F540, H541, Q542, K545, N546, F547, K548, S549, V550, L551, Y552, Y553, Q554, N555, K557, S558, S559, S560, D561, S562, S563, S564, H565, H566, H567, H568, H569, H570, C571	45	0.78
2	G1, I2, I3, N4, T5, L6, Q7, K8, Y9, Y10, C11, R12, V13, R14, G15, G16, R17, C18, A19, V20, L21, S22, C23, L24, P25, K26, E27, E28, Q29, I30, G31, K32, C33, S34, T35, R36, G37, R38, K39, C40, C41, R42, R43, K44, K45, E46, A47, A48, A49, K50, W51, T52, A53, G54, A55, A56, A57, Y58, Y59, A60, Y61, Y62, L63, S64, P65, R66, Y68, F69, Y70, Y71, A72, Y73, K75, V76, S77, I78, W79, N80, L81, D82, Y83, A84, Y85, Y86, L87, A88, Y89, Y90, F91, M92, R93, F94, R95, A96, Y97, Y98, V100, I101, Y102, L105, T106	101	0.768
3	F362, R365, I402, R403, Q404, G405, T406, D407, Y408, K409, K410, K411, K412, N423, L424, I425, I426, K427, K428, K429, I430, K431, N432, L433, S434, K435, S436, L437, T438, E439, N440, K441, Y442, S443, Q444, L445, D446, E447, K450, K451, V454, C458, Y459, T460, P461, S462, K463, L464, I465, K466, K467, M468, D469, T470, T471, S472, R474, E475, A476, A477, K478, K479, A480, D481, L482, V483, Y484, A485, L486, R487, H488, F489, D490, E491, G492, N493, C494, D495, K496, K497, T498	81	0.716
4	N315, M318, S319, K321, A322, A323, Y324, Y325, V326, G327, Y328, L329, K330, K331, G333, I334, Y335, Q336, T337, S338, N339, F340, R341, V342, Q343, P344, I364, K366, K367, K368, S369, A370, A371, E372, A373, S374, K375, K376, P377, R378, Q379, K380, R381, T382, A383, K384, K385, R386, G388, P389, E390, Q391, T392	53	0.644
5	Y499, H500, P501	3	0.544

Figure S4. Topology of predicted conformational BCEs in anti-SARS-CoV-2 MEV (in the various ranges of cyan). Non-epitope parts remained in the dark red.

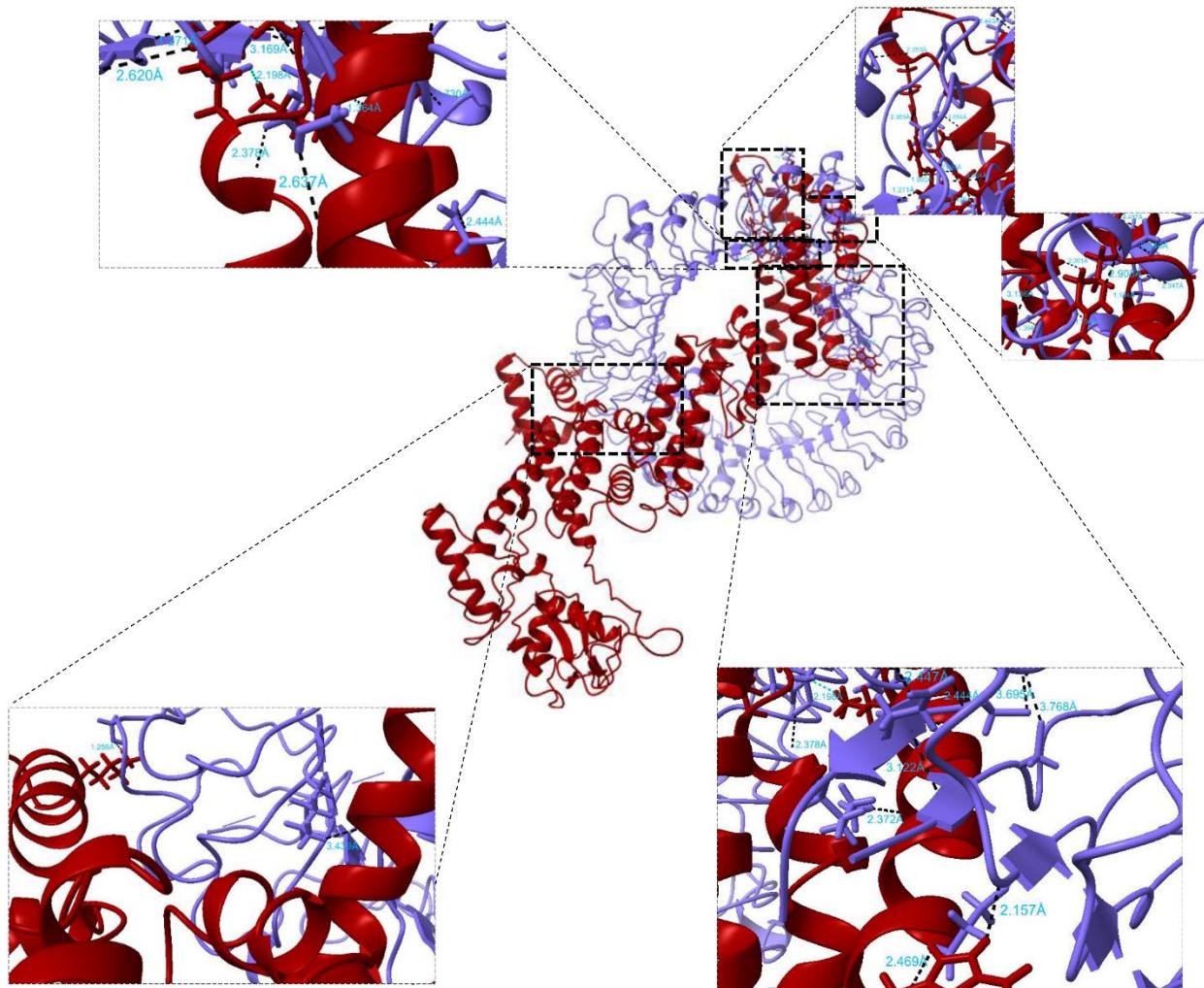


Figure S5. Analysis of molecular docking between TLR4-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, TLR4 in purple, salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S3. Analysis of possible H-bonds and salt-bridges via molecular docking between TLR4-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
TLR4					
SER207	OG	ARG93	NH1	1.207	Very strong
LEU208	O	ARG38	NE	3.225	Weak
ASP209 (Hbond and salt bridge)	OD2	ARG95	NH1	2.547	Strong
ASP209 (Hbond and salt bridge)	OD2	ARG95	NH2	2.119	Very strong
LEU210	N	GLU28	OE1	2.946	Strong
ASN213	O	LYS39	N	2.723	Strong
LEU231	N	TYR90	O	2.985	Strong
LEU231	N	PHE91	O	2.908	Strong
THR232	OG1	GLU46	OE2	3.188	Weak
ASN236	ND2	GLU27	O	2.127	Very strong
ILE247	O	GLN29	NE2	2.234	Very strong
HIS256	ND1	ARG17	NE	2.888	Strong
ARG257	NH2	ALA49	O	3.286	Weak
ARG257	NE	MET92	O	2.366	Very strong
GLY261	N	GLU27	OE1	2.080	Very strong
ARG289	NE	THR52	OG1	1.354	Very strong
PHE313	O	GLN7	H	0.912	Very strong
PHE313	O	LYS8	N	2.979	Strong
SER314	N	ILE2	O	1.350	Very strong
HIS334	ND1	LEU6	O	0.850	Very strong
GLU336	N	ILE3	O	2.523	Strong
GLU336	OE2	ALA56	N	2.682	Strong
THR357	N	GLN7	OE1	3.060	Strong
LEU404	O	ARG66	NH1	3.043	Strong
SER407	N	TYR62	OH	2.496	Very strong

^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

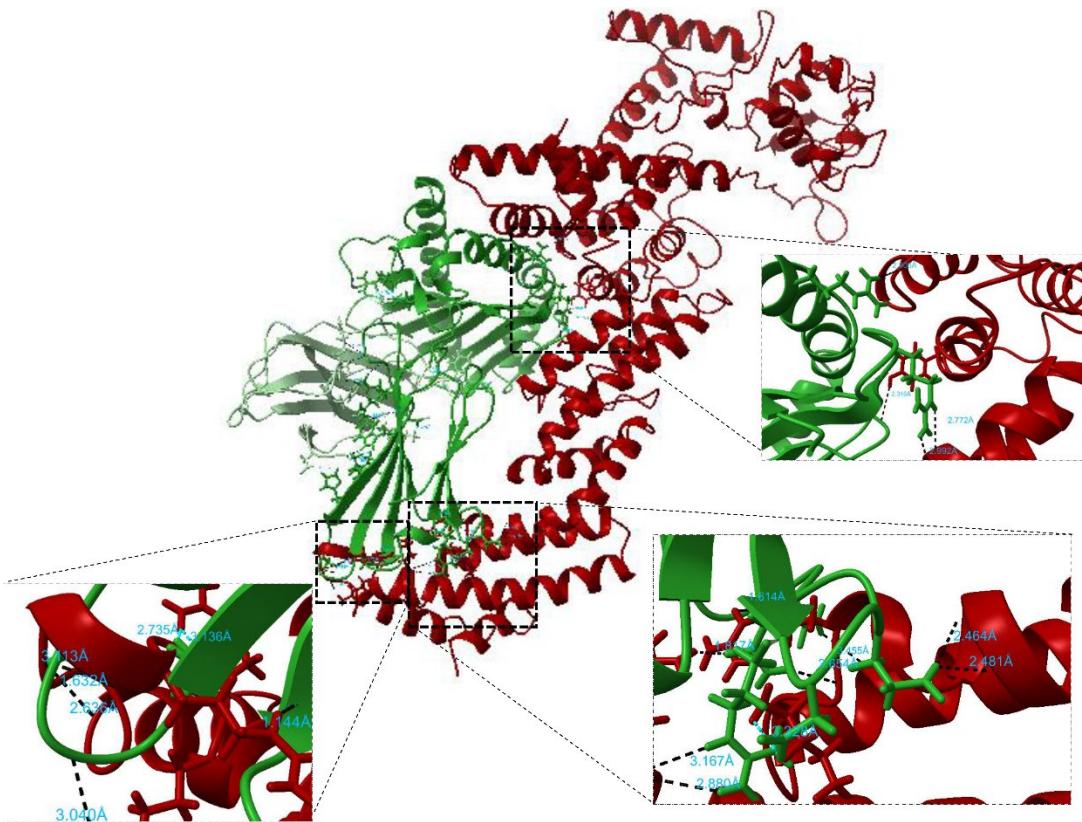

Figure S6. Analysis of molecular docking between TLR8-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, TLR8 in purple, salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S4. Analysis of possible H-bonds and salt-bridges via molecular docking between TLR8-anti-SARS-CoV-2- MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type (34)
TLR8					
CYS36	O	CYS11	SG	3.084	Strong
ASP37	OD1	ALA56	N	2.444	Very strong
ASP37	O	ALA60	N	3.122	Weak
GLU38	OE1	ARG12	N	2.447	Very strong
LYS39	NZ	ALA57	O	2.372	Very strong
THR66	O	TRP67	NE1	2.157	Very strong
GLU67	OE1	ARG66	N	2.469	Very strong
SER522	OG	LYS544	NZ	1.256	Very strong
LYS533	NZ	SER212	O	3.439	Weak
LEU701	O	GLY37	N	2.353	Very strong
ARG715	O	ARG93	NH2	2.620	Strong

LEU717	O	ARG95	NE	1.271	Very strong
ASP742	O	ARG42	NH1	1.203	Very strong
ASP742 (Hbond and salt bridge)	OD1	LYS50	NZ	2.198	Very strong
LEU743	N	ARG93	O	3.169	Weak
SER744	O	ARG42	NH1	2.624	Strong
ASN746	OD1	ARG36	NE	2.385	Very strong
ASN746	O	ARG43	N	1.694	Very strong
LYS749	NZ	GLN29	O	1.443	Very strong
SER765	OG	LEU81	O	2.637	Strong
GLU768	O	ARG95	NH1	3.064	Strong
GLU768	OE2	TYR97	N	2.378	Very strong
HIS770	ND1	LYS50	N	1.364	Very strong
ASP788	O	ARG17	NH1	2.908	Strong
ASP788	OD1	VAL20	N	2.640	Strong
VAL793	O	PHE91	N	3.136	Weak
ASP800	N	ALA48	O	1.730	Very strong
ILE802	N	LYS44	O	2.391	Very strong
SER813	O	GLY1	N	2.347	Very strong
SER813	OG	ILE3	N	1.184	Very strong

^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

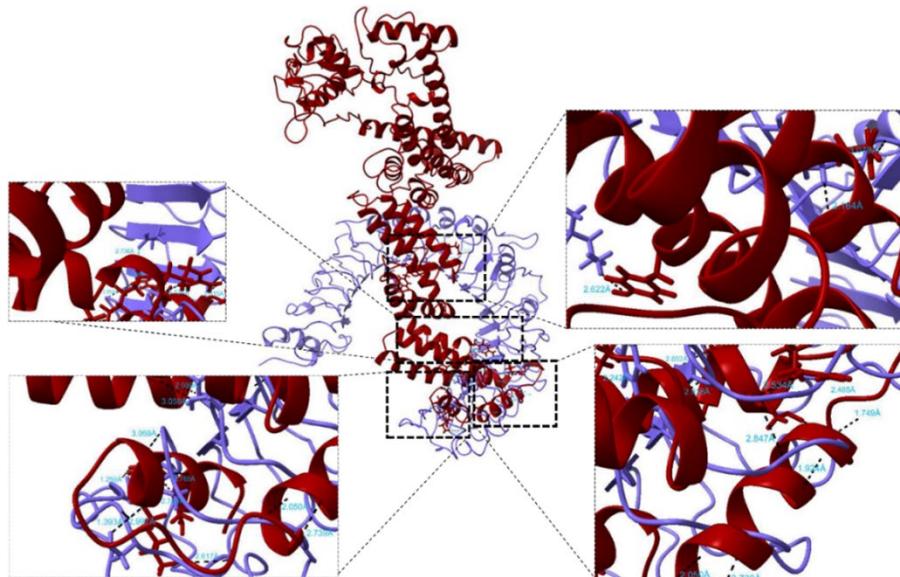


Figure S7. Analysis of molecular docking between HLA-A*03:01-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, A chain of HLA-A*03:01 in dark green, β_2 -microglobulin in light green; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S5. Analysis of possible H-bonds and salt-bridges via molecular docking between HLA-A*03:01-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type (34) ^a
HLA-A*03:01					MEV
ARG108	NE	PRO211	O	2.772	Strong
ARG108	NH2	SER212	OG	2.992	Strong
ASP129	O	TYR251	OH	2.316	Very strong
ARG169	NH2	PRO301	O	2.906	Strong
SER195	OG	ARG36	N	1.632	Very strong
ASP196	O	LYS39	NZ	3.040	Strong
HIS197	N	CYS33	O	2.636	Strong
GLU198	N	CYS33	O	3.113	Weak
GLU198 (Hbond and salt bridge)	OE1	ARG38	NH1	2.735	Strong
GLU198 (Hbond and salt bridge)	OE2	ARG38	NH1	3.136	Weak
ARG219	NE	ARG42	O	3.167	Weak
ARG219	NH1	ARG42	O	2.880	Strong
ASP220 (Hbond and salt bridge)	OD2	LYS50	NZ	3.328	Weak
GLU222	OE1	VAL100	N	2.464	Very strong
GLU222	OE1	ILE101	N	2.481	Very strong
GLN224	OE1	ARG42	NH1	1.817	Very strong
GLN224	NE2	PHE94	O	2.654	Strong
GLN226	NE2	TYR85	O	3.455	Weak
GLN226	O	ARG95	NE	1.614	Very strong
VAL249	O	ARG36	NE	1.144	Very strong

^aD-H...A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

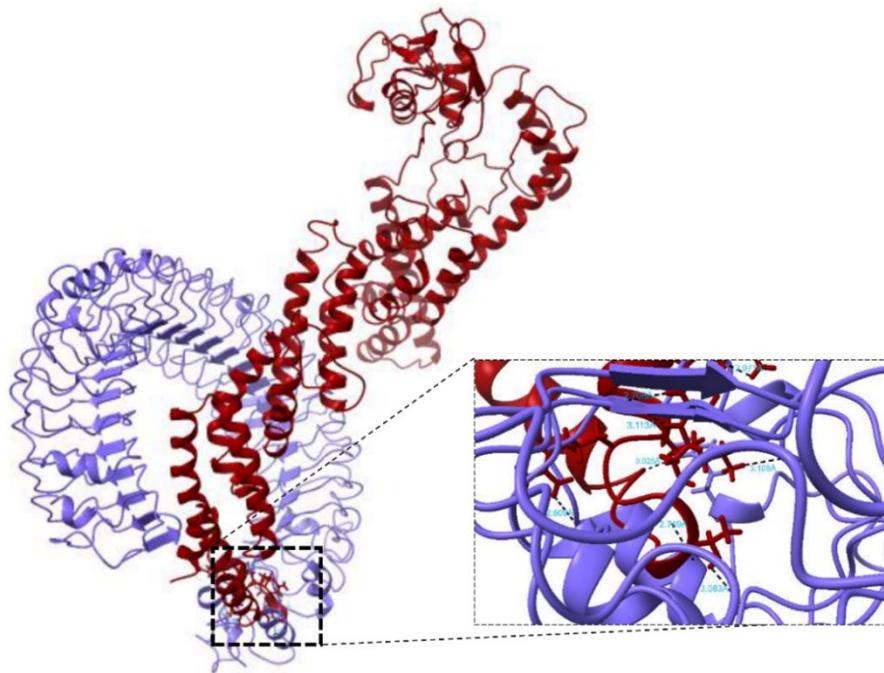


Figure S8. Analysis of molecular docking between TLR2-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, TLR2 in purple, salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S6. Analysis of possible H-bonds and salt-bridges via molecular docking between TLR2-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
TLR2		MEV			
GLY38	N	GLN7	OE1	1.259	Very strong
GLY41	O	ARG14	N	1.393	Very strong
SER42	OG	LYS8	O	2.997	Strong
SER45	O	LYS8	NZ	2.617	Strong
ASP58	N	ASN4	OD1	2.765	Strong
SER60	O	TYR10	N	3.059	Weak
ASN62	ND2	ILE3	O	2.764	Strong
ILE64	O	LEU21	N	2.050	Strong
THR84	OG1	ALA53	N	2.039	Very strong
SER85	OG	TYR98	OH	3.059	Strong
ASN89	N	CYS18	O	2.739	Strong
ASP106	OD2	TRP51	N	2.242	Very strong
TYR109	OH	ARG95	NH1	3.131	Weak
LEU112	O	CYS41	SG	2.847	Strong
ASN114	N	PRO25	O	1.924	Very strong
LEU115	O	LYS32	N	1.749	Very strong
SER116	O	CYS40	SG	2.485	Very strong
THR127	O	ARG43	NH2	2.852	Strong
ASN130	O	ALA48	N	2.918	Strong
ASN134	O	ARG38	NE	2.534	Strong
ILE139	O	GLN208	NE2	3.079	Strong
ILE153	O	ARG43	NE	2.368	Very strong
GLY157	O	ARG95	NH2	2.015	Very strong
GLU180					
(Hbond and salt bridge)	OE2	LYS50	NZ	2.736	Strong
LYS347	NZ	GLN205	O	2.164	Very strong
LYS422	NZ	TYR145	OH	2.622	Strong

^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

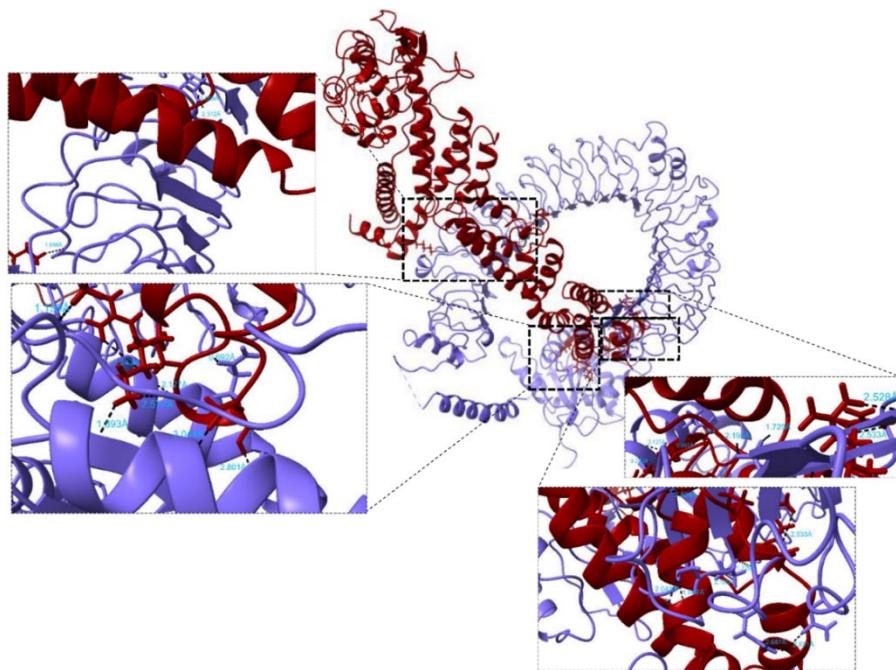


Figure S9. Analysis of molecular docking between TLR3-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, TLR3 in purple, salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S7. Analysis of possible H-bonds and salt-bridges via molecular docking between TLR3-anti-SARS-CoV-2- MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
TLR3		MEV			
ILE654	O	THR35	OG1	3.083	Strong
PHE657	O	ARG36	N	2.749	Strong
GLU663	O	ARG38	NH1	2.609	Strong
ASN667	O	ARG36	NE	3.113	Weak
ASN667	O	ARG36	NH2	2.708	Strong
PRO669	O	ARG43	NH1	2.971	Strong
TYR675	O	LYS39	NZ	3.108	Weak
ARG689	NE	ILE30	O	3.025	Strong

^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

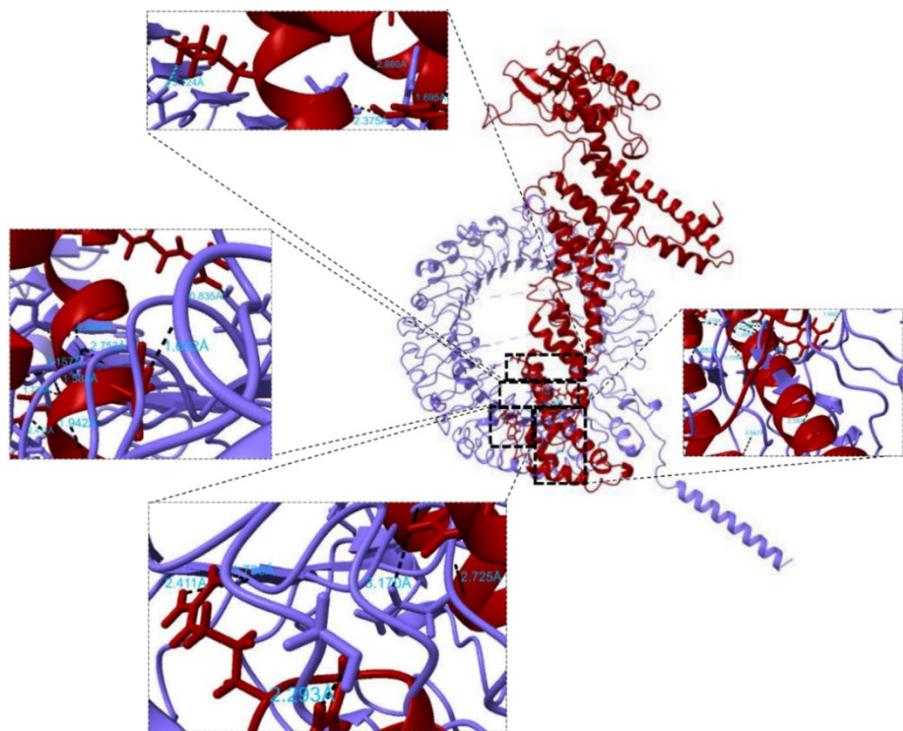


Figure S10. Analysis of molecular docking between TLR5-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, TLR5 in purple, salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S8. Analysis of possible H-bonds and salt-bridges via molecular docking between TLR5-anti-SARS-CoV-2- MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
TLR5					
LEU45	O	LYS8	N	2.043	Very strong
THR48	OG1	ASN4	O	1.657	Very strong
GLU49	OE1	PHE91	N	1.729	Very strong
GLU49	OE2	MET92	N	2.195	Very strong
LEU52	N	CYS11	O	2.504	Strong
GLN71	OE1	CYS23	N	2.687	Strong
GLN73	O	ARG17	NH1	2.533	Strong
GLU76	O	ARG14	NH1	2.528	Strong
ASN96	OD1	CYS23	N	2.881	Strong
GLU432	OE2	GLY204	N	2.312	Very strong
GLN457	NE2	GLY202	O	3.059	Strong
TRP489	O	LYS548	NZ	1.556	Very strong
LYS692	O	LYS44	NZ	1.159	Very strong
ALA695	O	LYS39	NZ	1.893	Very strong
LEU697	O	CYS33	SG	3.044	Strong
ASP703	O	SER34	OG	2.801	Strong
GLN708	OE1	GLY37	N	0.692	Very strong
LEU712	O	ARG36	NH1	3.243	Weak
LYS713	N	THR35	O	2.127	Very strong
CYS728	O	LYS39	NZ	2.572	Strong

^aD-H...A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

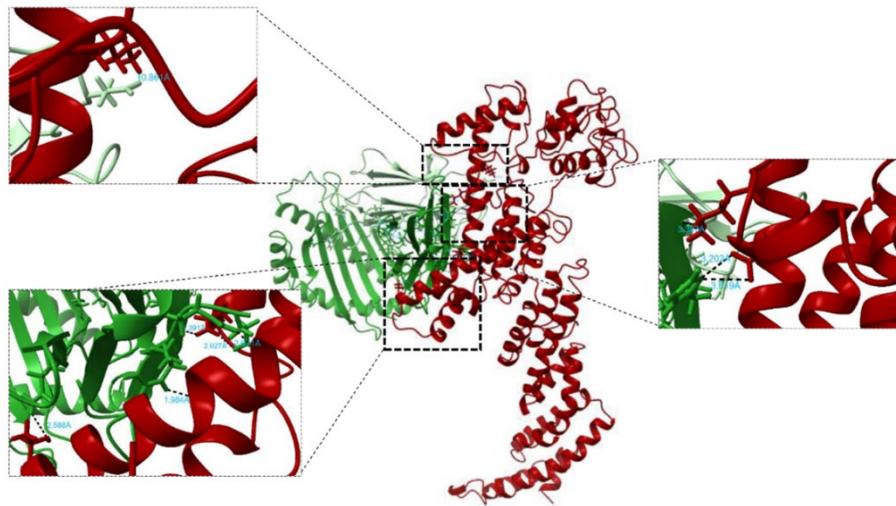


Figure S11. Analysis of molecular docking between TLR7-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, TLR7 in purple, salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S9. Analysis of possible H-bonds and salt-bridges via molecular docking between TLR7-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
TLR7		MEV			
ASP605 (Hbond and salt bridge)	OD2	LYS75	NZ	3.124	Weak
SER661	OG	ARG14	NH1	2.293	Very strong
SER681	O	ARG12	NH1	1.736	Very strong
SER681	O	ARG12	NH2	2.411	Very strong
LYS684	NZ	TYR102	OH	2.375	Very strong
LYS688	NZ	ALA84	O	2.053	Very strong
SER707	OG	ALA57	O	3.157	Weak
SER707	OG	TYR58	O	2.753	Strong
SER707	OG	SER64	N	2.880	Strong
SER707	O	ASN80	ND2	3.479	Weak
HIS708	N	ALA57	O	2.012	Very strong
HIS708	ND1	ALA60	O	1.695	Very strong
ASN709	N	ALA56	O	2.725	Strong
ASN709	OD1	ASN80	ND2	3.170	Weak
THR713	N	ILE3	O	2.547	Strong
LYS731	O	TYR61	N	1.588	Very strong
ASN733	N	GLY54	O	1.942	Very strong
ARG736	N	ALA48	O	3.187	Weak
TYR751	OH	ARG66	NH1	0.835	Very strong
HIS781	O	TYR58	OH	1.692	Very strong

^a D-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

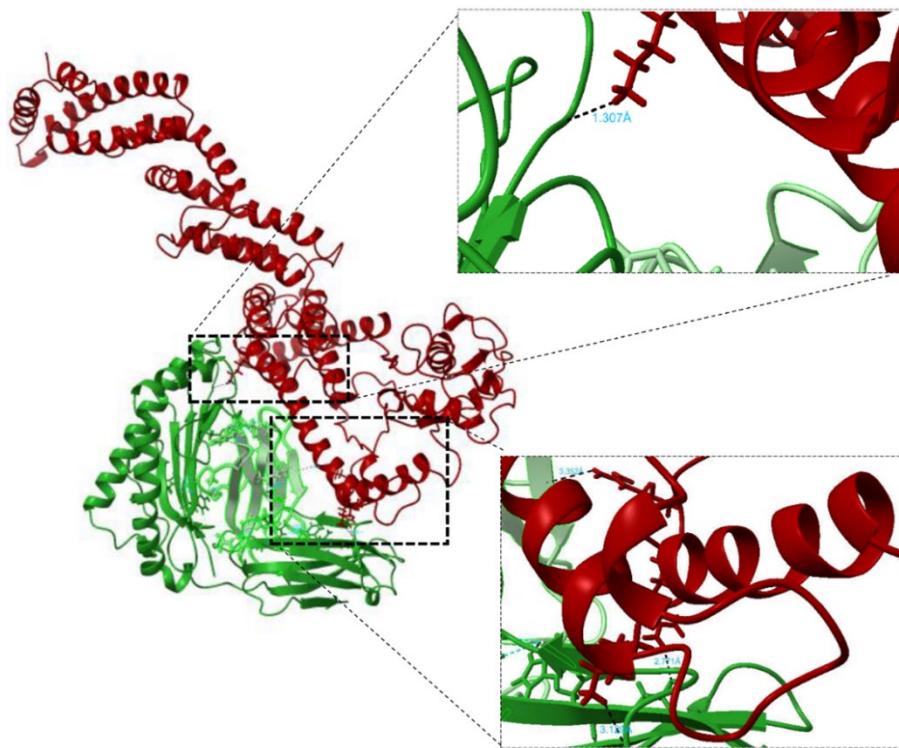


Figure S12. Analysis of molecular docking between HLA-A*11:01-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, A chain of HLA-A*11:01 in dark green, β_2 -microglobulin in light green; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S10. Analysis of possible H-bonds and salt-bridges via molecular docking between HLA-A*11:01-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (\AA)	H-bond type according to (34)
HLA-A*11:01					
GLU74 (Hbond and salt bridge)	OE2	LYS321	NZ	0.861	Very strong
HIS192	ND1	LYS348	NZ	3.387	Weak
GLN218	NE2	THR536	OG1	2.588	Strong
GLN255	NE2	LYS522	O	2.671	Strong
ARG273	O	ASN305	ND2	1.391	Very strong
ARG273	NE	LYS526	O	1.984	Very strong
GLU275	OE1	ASN305	ND2	2.027	Very strong

^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

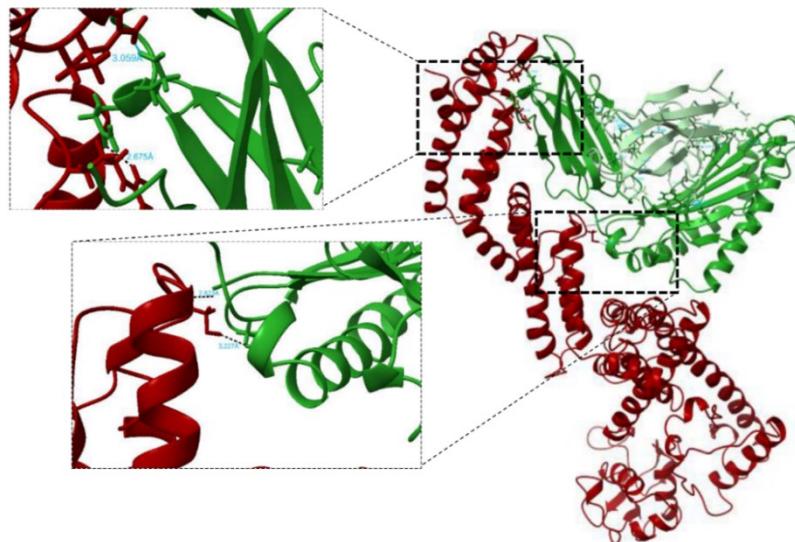


Figure S13. Analysis of molecular docking between HLA-A*68:01-anti-SARS-CoV-2 MEV in docked complex using UCSF Chimera X [Vaccine construct in dark red, A chain of HLA-A*68:01 in dark green, β_2 -microglobulin in light green; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S11. Analysis of possible H-bonds and salt-bridges via molecular docking between HLA-A*68:01-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
HLA-A*68:01					
ILE92	O	ARG387	NH2	3.352	Weak
SER92	O	LYS298	NZ	1.307	Very strong
THR200	OG1	ARG386	NH2	2.771	Strong
GLN224	O	LYS330	NZ	3.129	Weak

^aD-H...A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

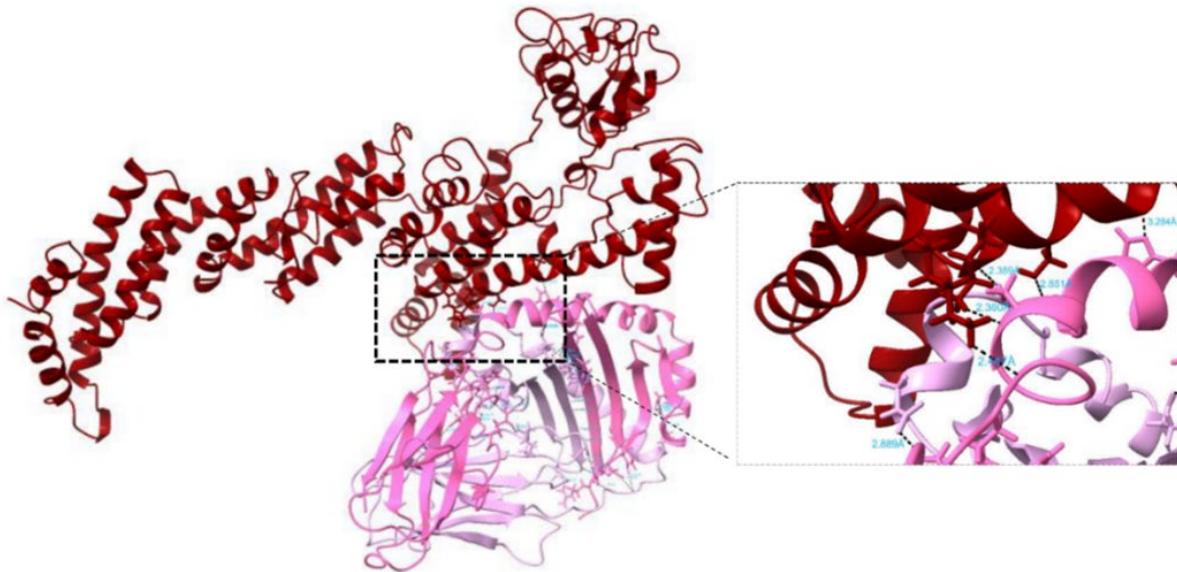


Figure S14. Analysis of molecular docking between HLA-B*35:01-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, A chain of HLA-B*35:01 in dark green, β_2 -microglobulin in light green; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S12. Analysis of possible H-bonds and salt-bridges via molecular docking between HLA-B*35:01-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
HLA-B*35:01					
GLY1	N	CYS199	O	2.823	Strong
GLN180	OE1	CYS199	SG	3.227	Weak
GLN225	OE1	ARG93	NH1	2.675	Strong
GLU254 (Hbond and salt bridge)	OE1	ARG38	NH2	3.059	Strong

^a D-H...A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

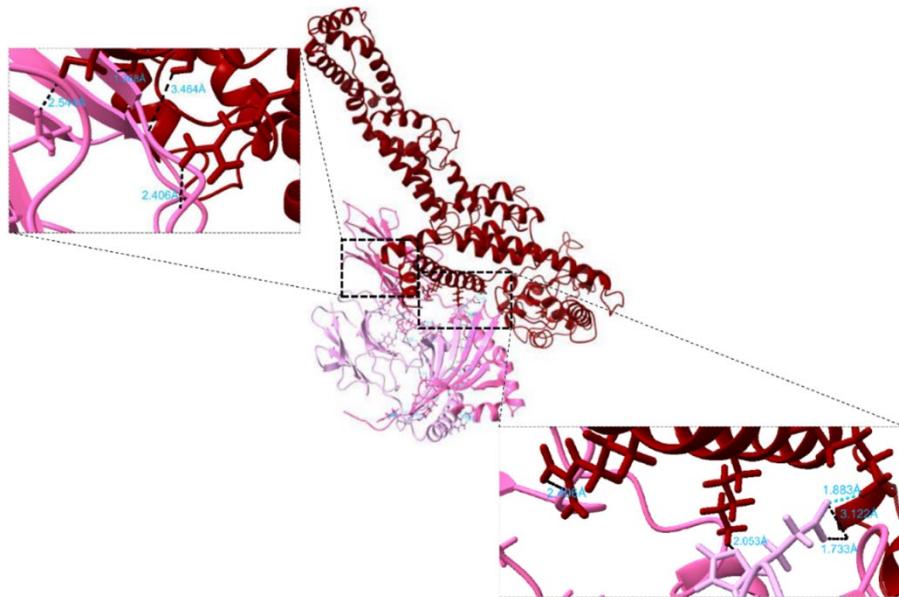


Figure S15. Analysis of molecular docking between HLA-DRB1*01:01-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, A chain of HLA-DRB1*01:01 in dark pink, B chain of HLA-DRB1*01:01 in light pink; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S13. Analysis of possible H-bonds and salt-bridges via molecular docking between HLA-DRB1*01:01-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34)
HLA-DRB1*01:01					
SER88	OG	GLY304	O	2.389	Very strong
SER88	O	LYS307	NZ	2.360	Very strong
SER88	N	SER308	OG	2.851	Strong
GLN92	O	LYS298	NZ	2.447	Very strong

^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

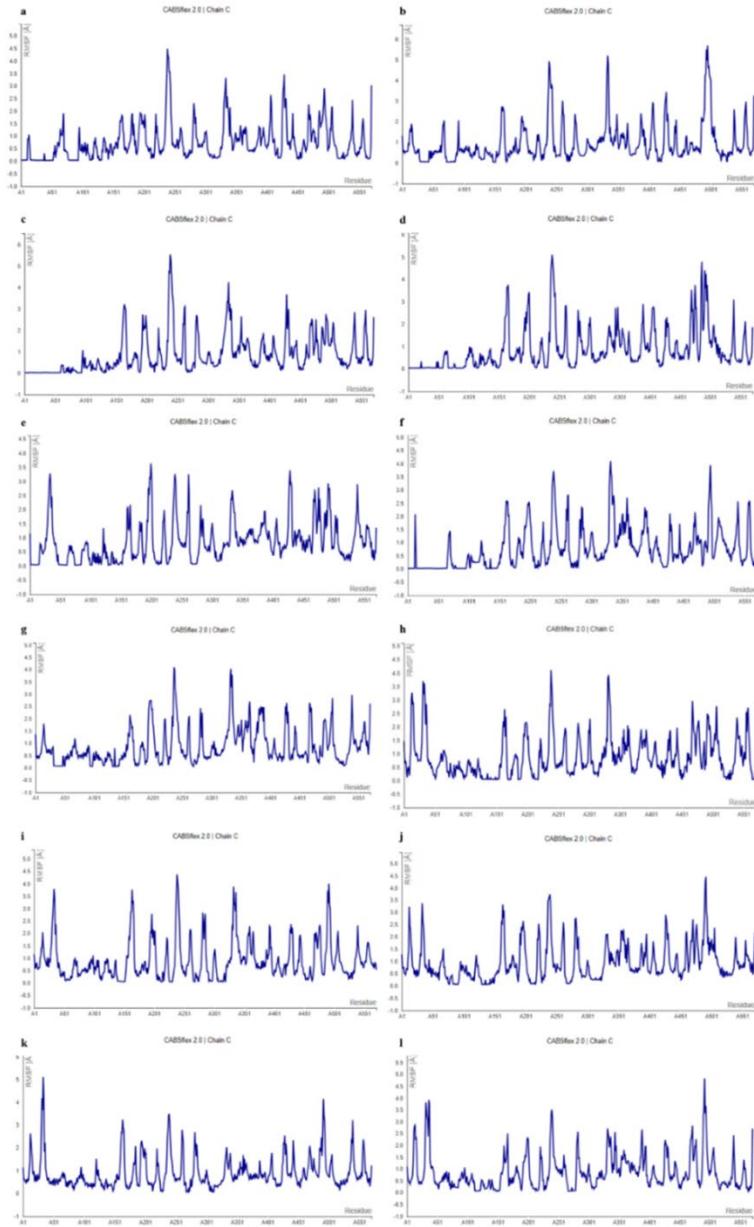


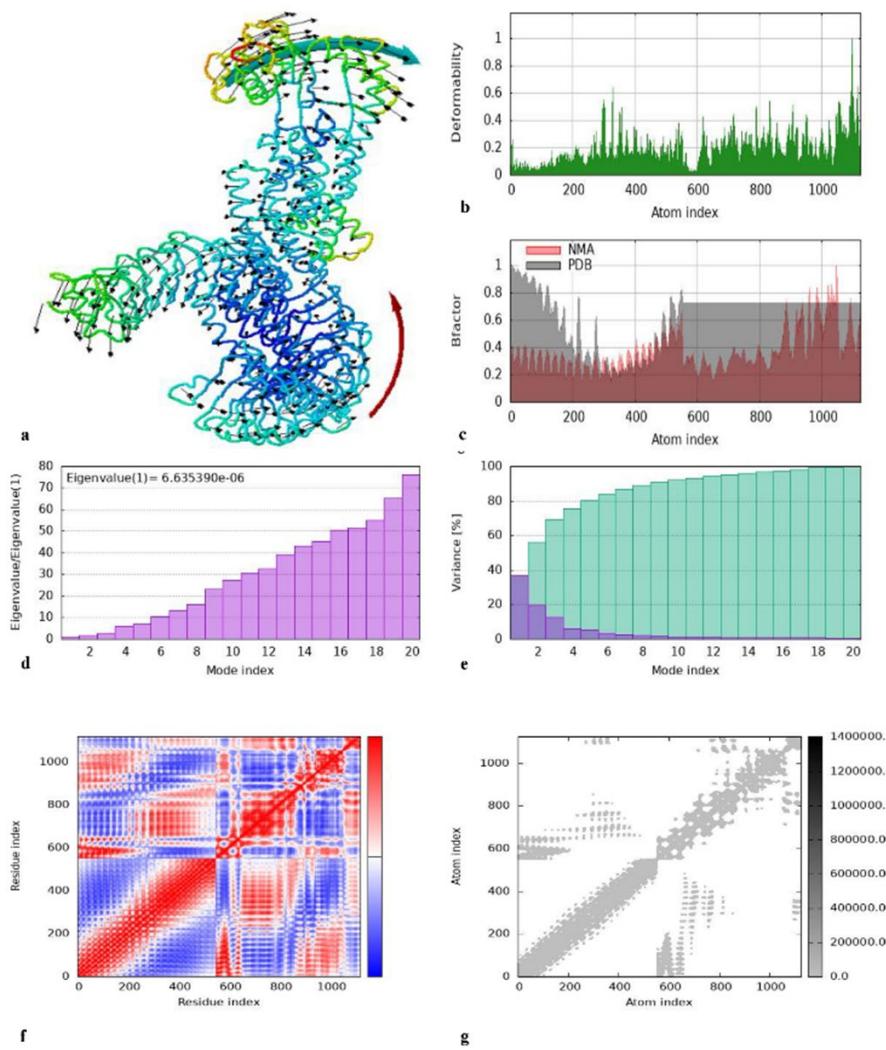
Figure S16. Analysis of molecular docking between HLA-DRB1*09:01-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, A chain of HLA-DRB1*09:01 in dark pink, B chain of HLA-DRB1*01:01 in light pink; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

Table S14. Analysis of possible H-bonds and salt-bridges via molecular docking between HLA-DRB1*09:01-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34) ⁴⁷
HLA-DRB1*09:01					
GLU4 (Hbond and salt bridge)	OE2	LYS518	NZ	1.883	Very strong
HIS5	NE2	LYS517	NZ	2.053	Very strong
GLY125	O	ARG524	NH2	2.406	Very strong
ILE127	O	SER564	OG	3.464	Weak
VAL129	N	ASP561	OD2	1.368	Very strong
THR157	OG1	SER563	OG	2.544	Strong

^a D-H...A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance

Figure S17. Analysis of RMSF fluctuation in the vaccine construct following the docking with **(a)** TLR2; **(b)** TLR3; **(c)** TLR4; **(d)** TLR5; **(e)** TLR7; **(f)** TLR8; **(g)** HLA-A*03:01; **(h)** HLA-A*11:01; **(i)** HLA-A*68:01; **(j)** HLA-B*35:01; **(k)** HLA-DRB1*01:01; **(l)** HLA-DRB1*09:01.


Table S15. Analysis the RMSF value of vaccine construct in complex with various immune receptors

Docked complex of MEV-TLRs:	Max. RMSF	Residue No.	Min. RMSF	Residue No.	Docked complex of MEV-MHC I/II:	Max. RMSF	Residue No.	Min. RMSF	Residue No.
	4.488	239	0.027	42, 46	HLA-A*03:01	4.096	237	0.051	143
TLR3	5.706	496	0.044	150	HLA-A*11:01	4.107	239	0.045	170
TLR4	5.539	239	0.019	49	HLA-A*68:01	4.38	239	0.049	230, 231
TLR5	5.098	239	0.034	79, 80	HLA-B*35:01	4.455	492	0.06	131

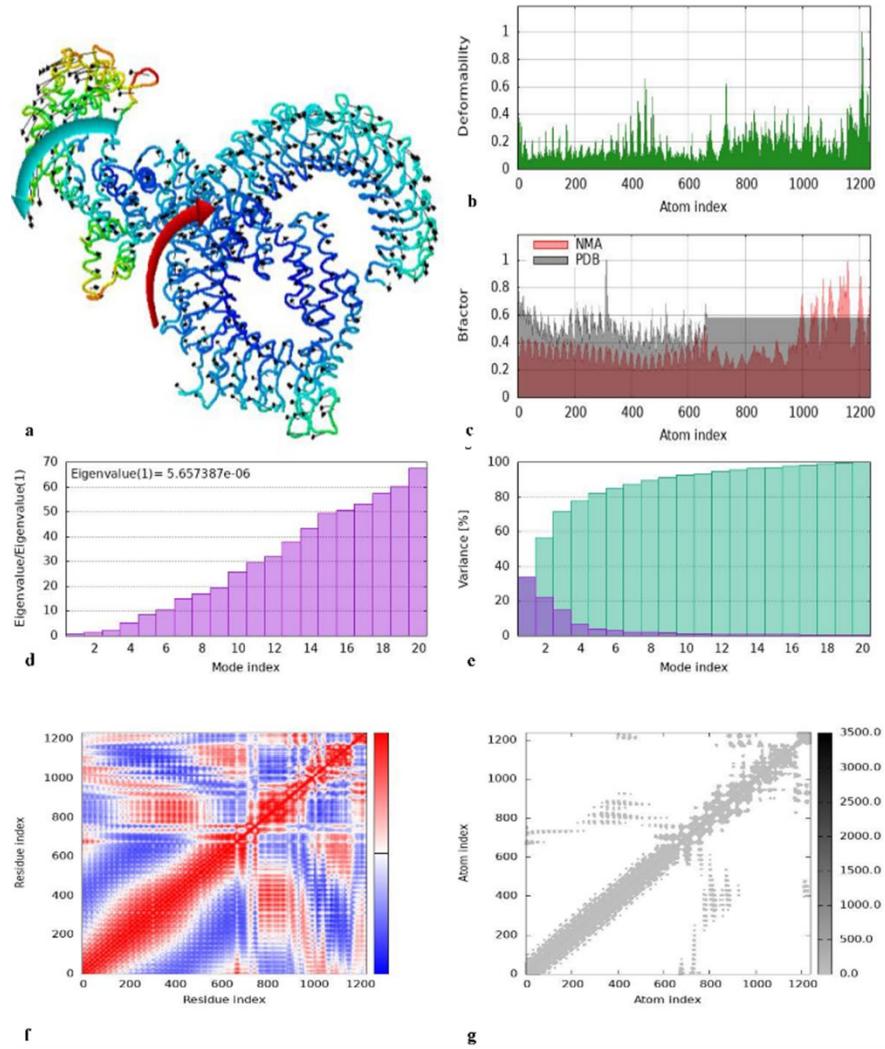
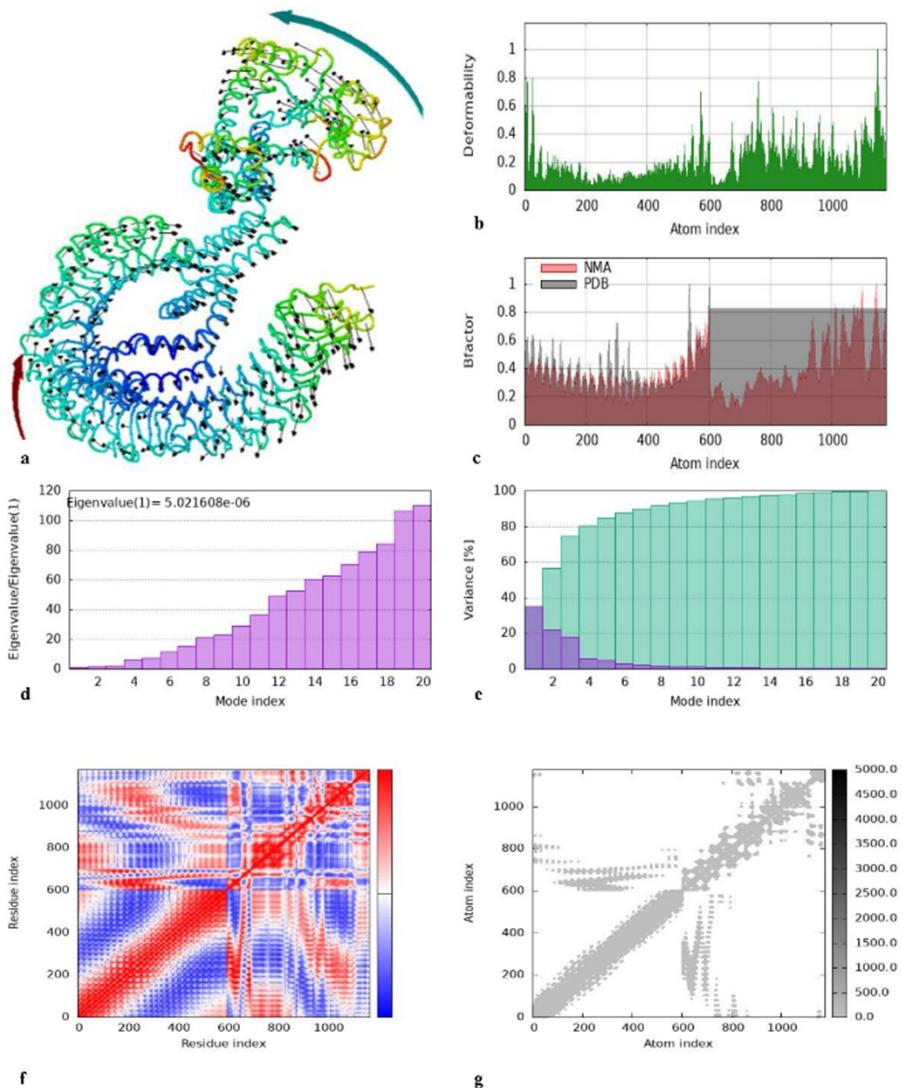
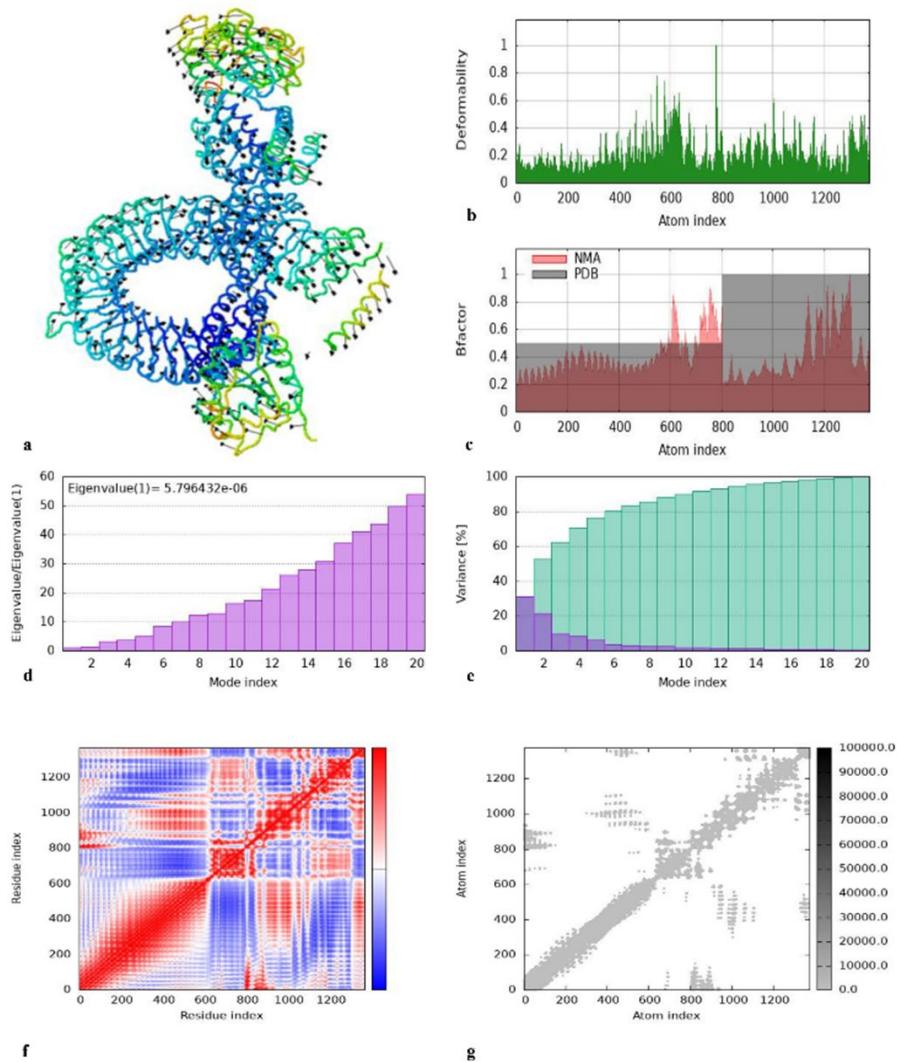
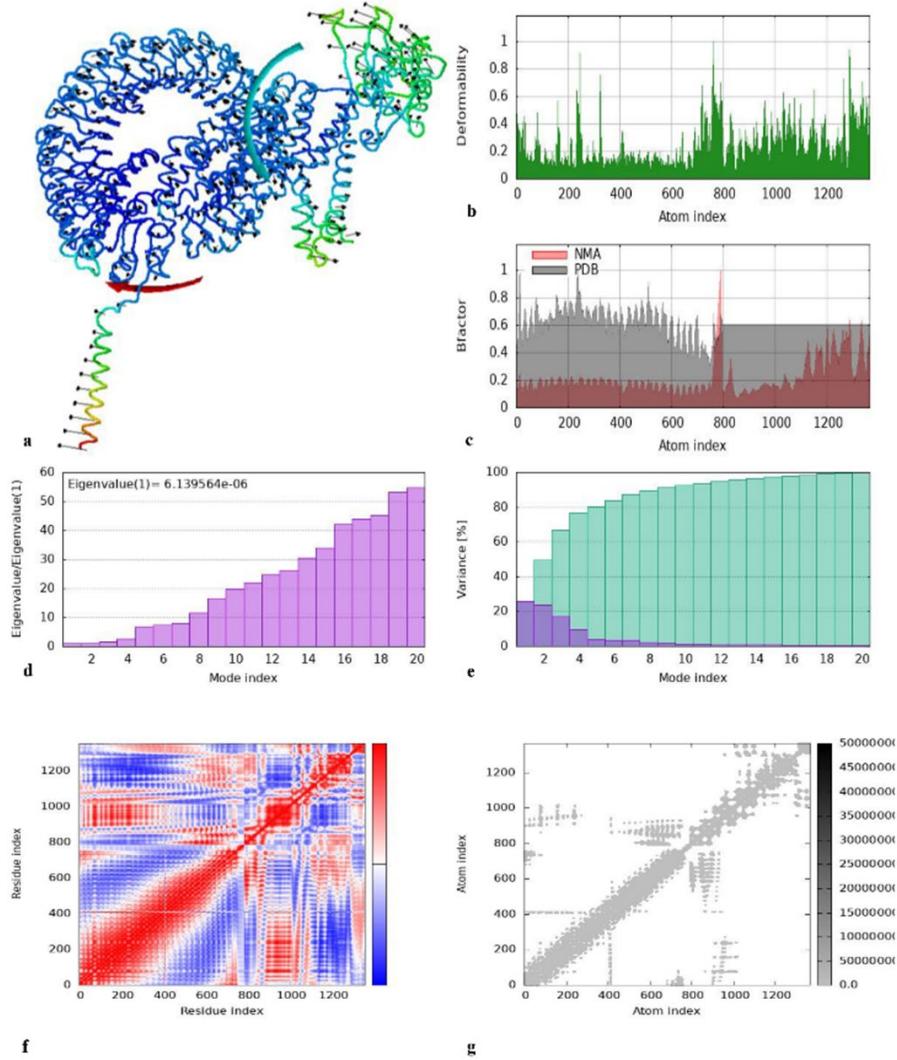
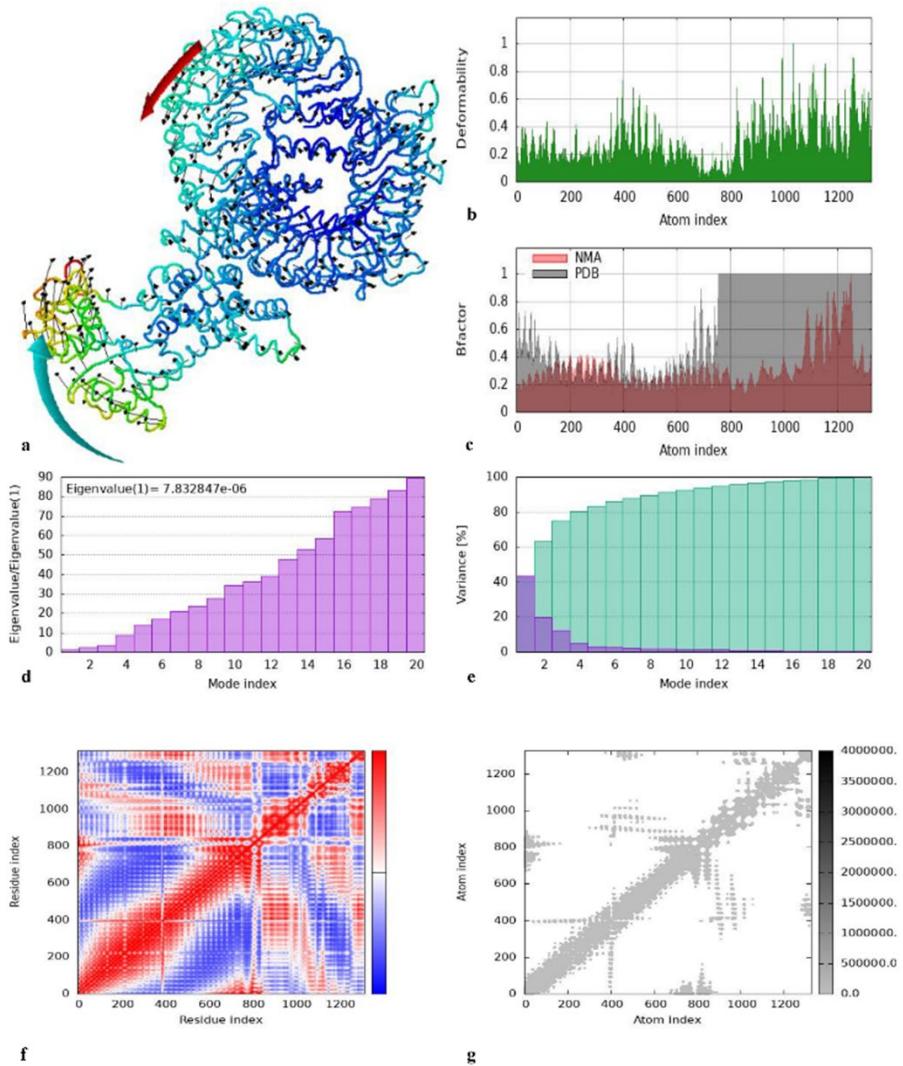

TLR7	3.638	200	0.028	75	HLA- DRB1*01:01	5.11	34	0.063	311
TLR8	4.101	332	0.02	94	HLA- DRB1*09:01	4.83	492	0.051	564

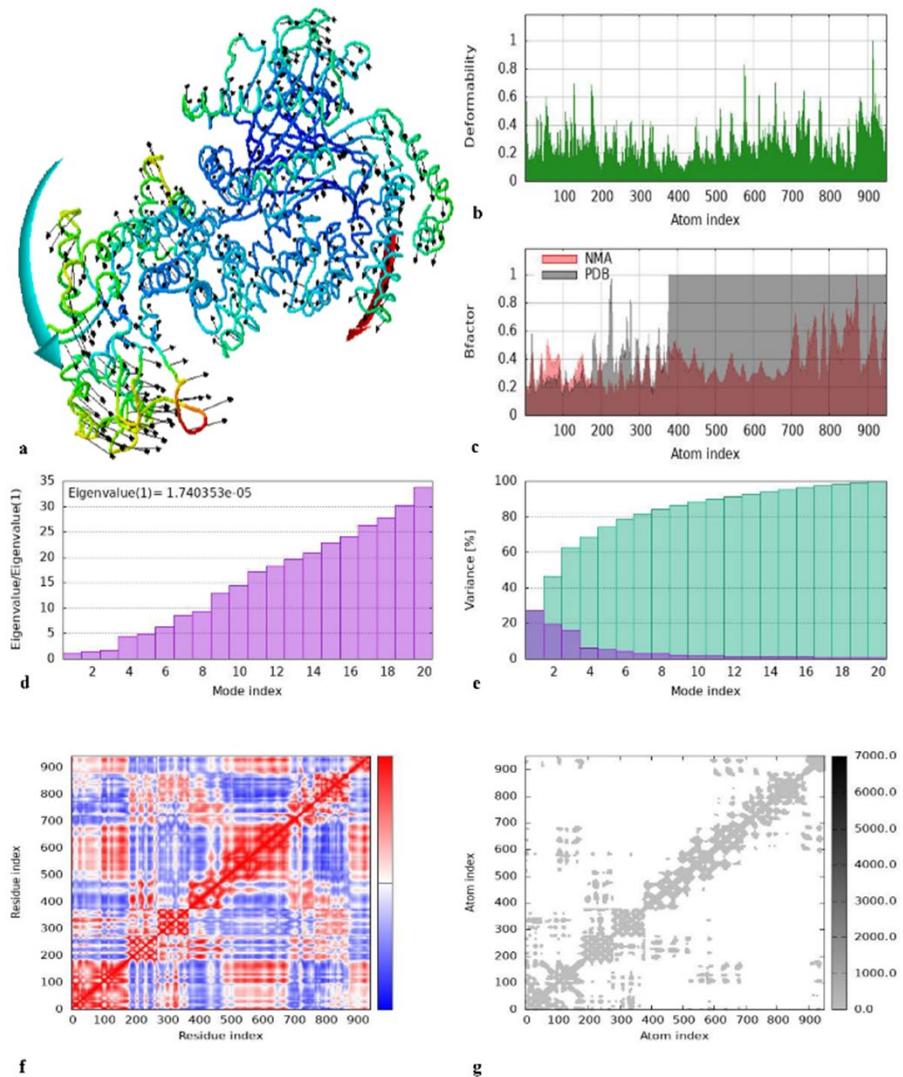
Table S16. Predicted eigenvalues of immune receptors with anti-SARS-CoV-2 MEV by iMODS server

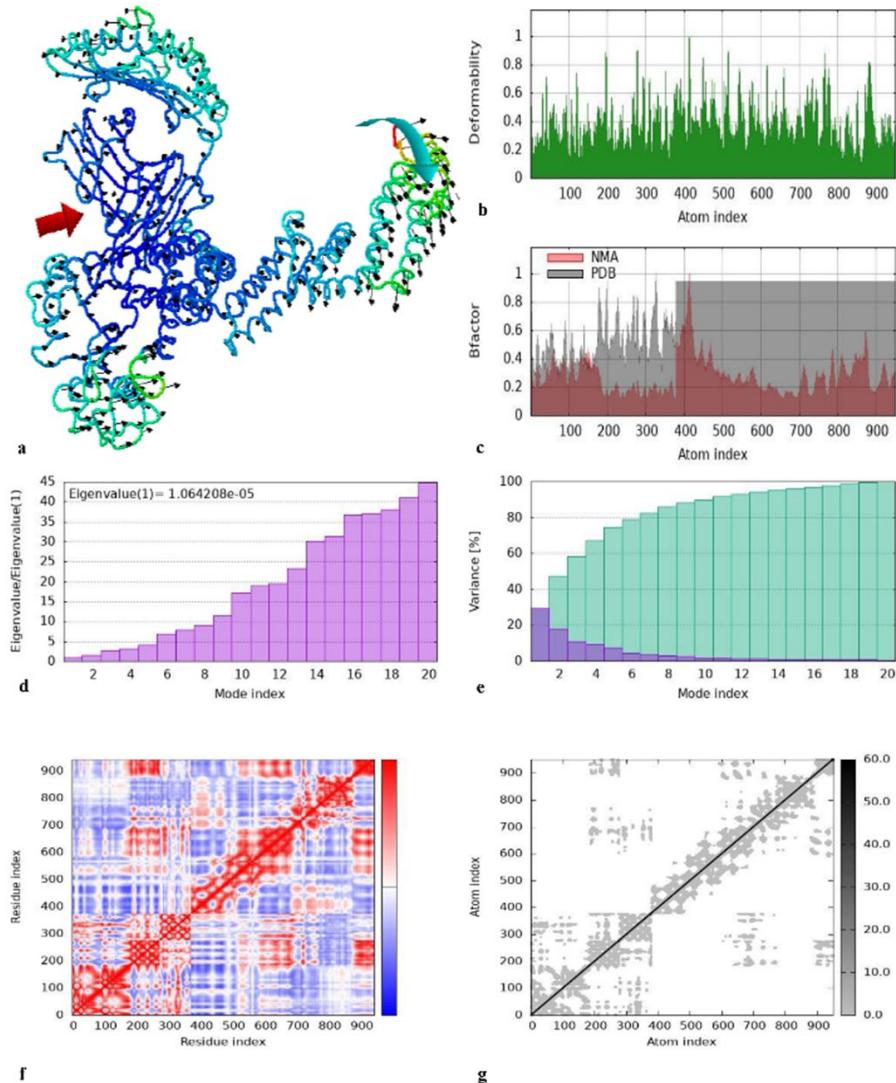

TLRs-MEV complex	Eigenvalue	MHC I/II- MEV complex	Eigenvalue
TLR2	6.6325390e-06	HLA-A*03:01	1.740353e-05
TLR3	5.657387e-06	HLA-A*11:01	1.064208e-05
TLR4	5.021608e-06	HLA-A*68:01	1.177935e-05
TLR5	5.796432e-06	HLA-B*35:01	1.231407e-05
TLR7	6.139564e-06	HLA-DRB1*01:01	8.964068e-06
TLR8	7.832847e-06	HLA-DRB1*09:01	1.177296e-05

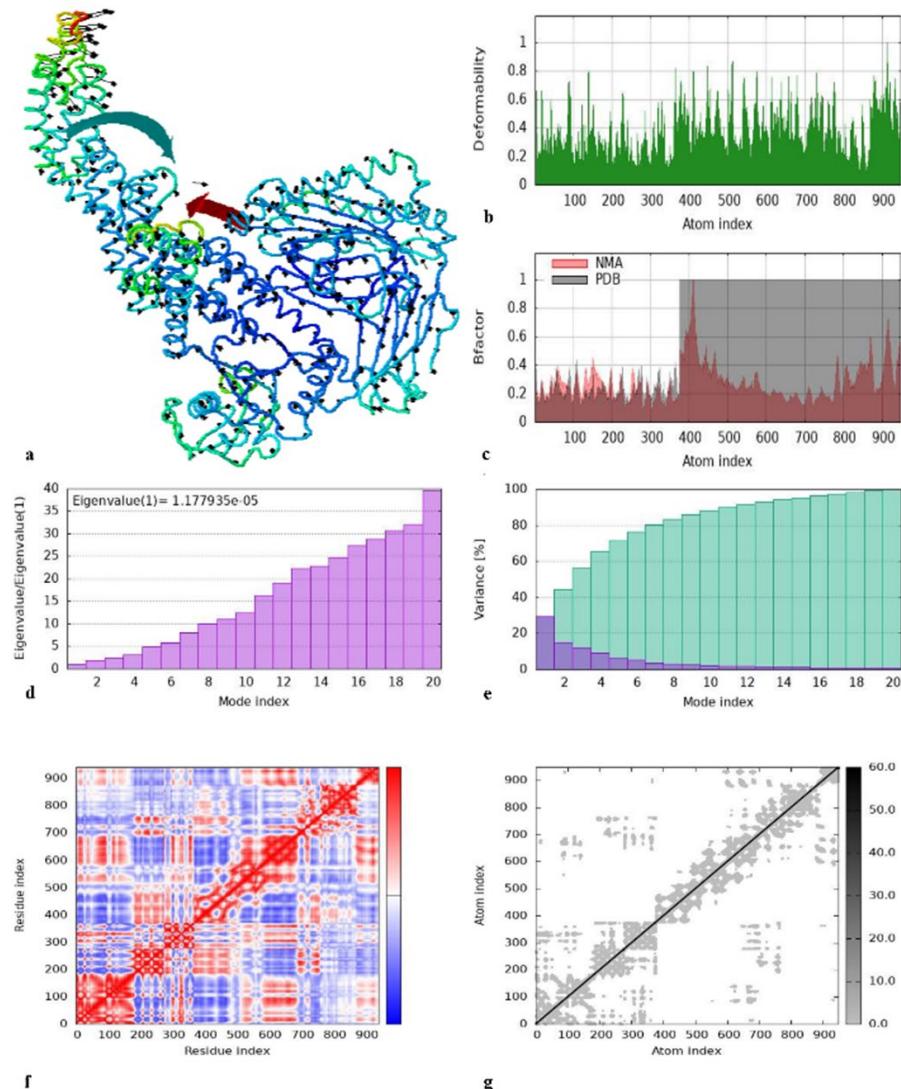

Figure S18. The dynamics simulation analysis of TLR2-MEV complex. (a) 3D structure of conformational dynamic motion; (b) deformability graph; (c) b-factor graph; (d) eigenvalue; (e) variance map (the green and colored columns show the cumulative and individual variances, respectively); (f) covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and (g) elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

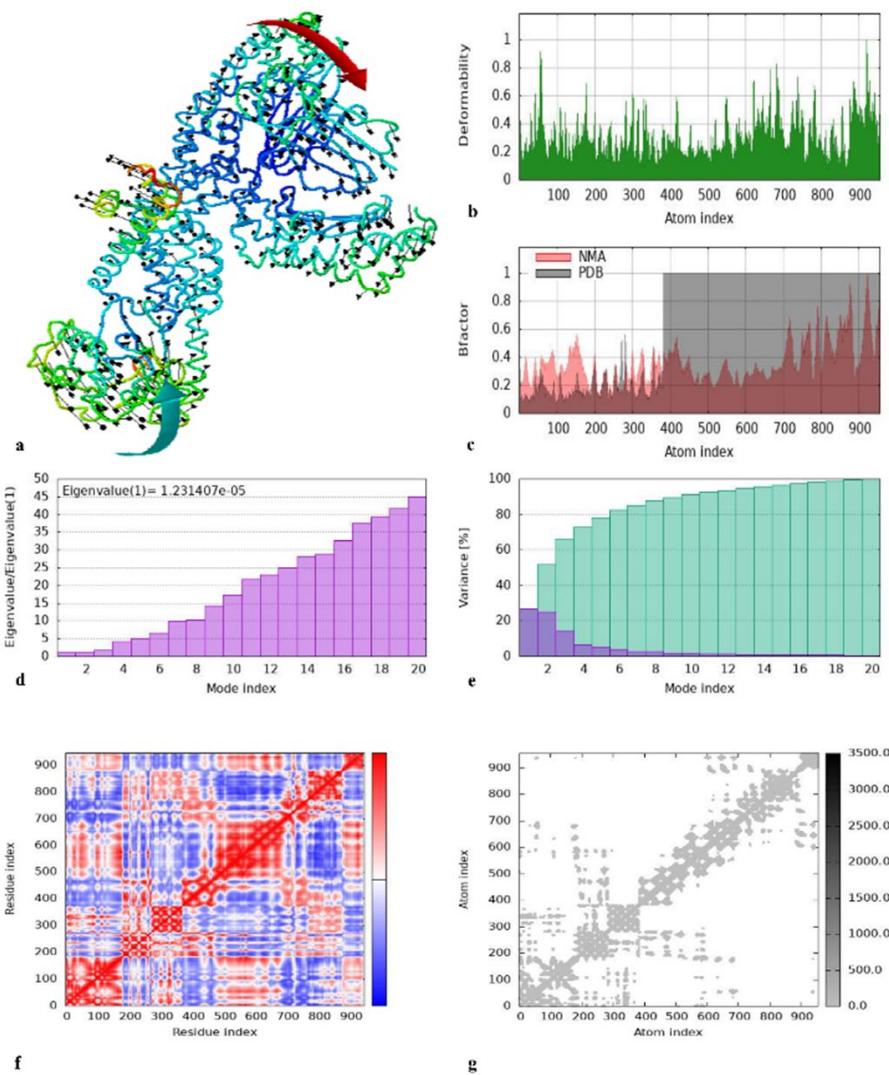

Figure S19. The dynamics simulation analysis of TLR3-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

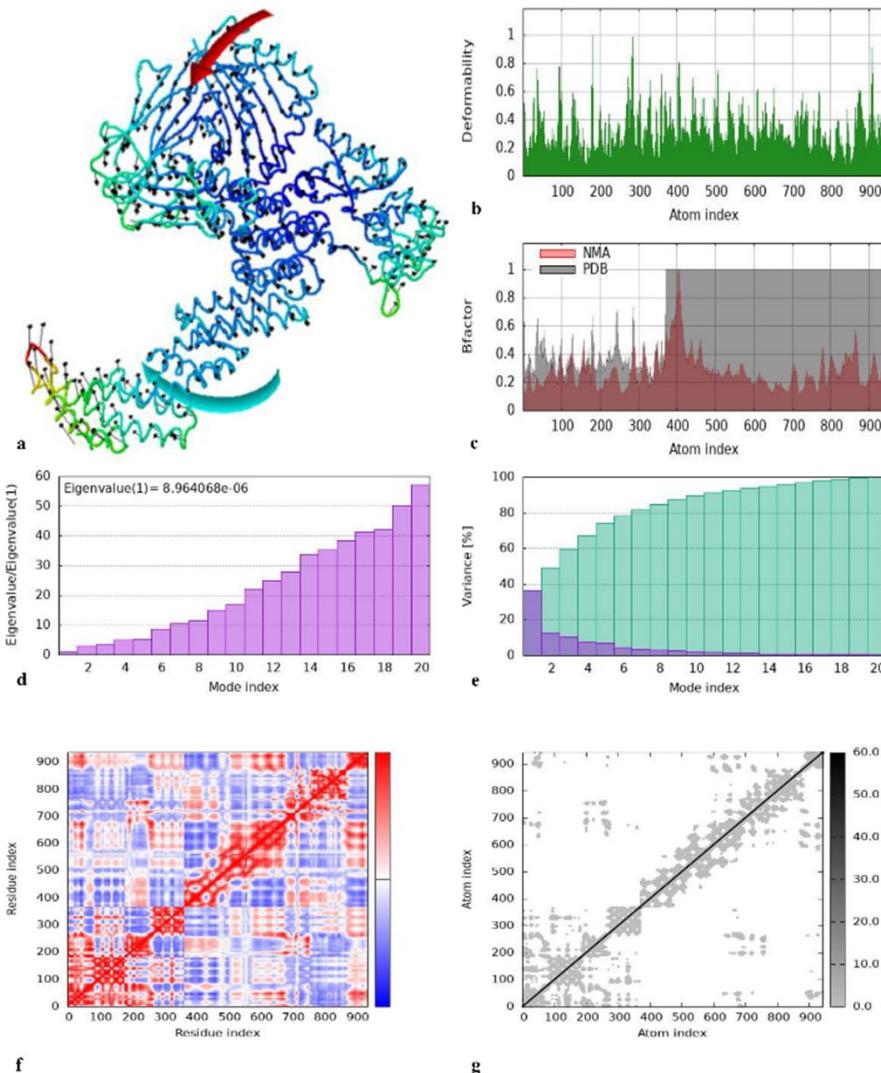

Figure S20. The dynamics simulation analysis of TLR4-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).


Figure S21. The dynamics simulation analysis of TLR5-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).


Figure S22. The dynamics simulation analysis of TLR7-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).


Figure S23. The dynamics simulation analysis of TLR8-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).


Figure S24. The dynamics simulation analysis of HLA-A*03:01-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).


Figure S25. The dynamics simulation analysis of HLA-A*11:01-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

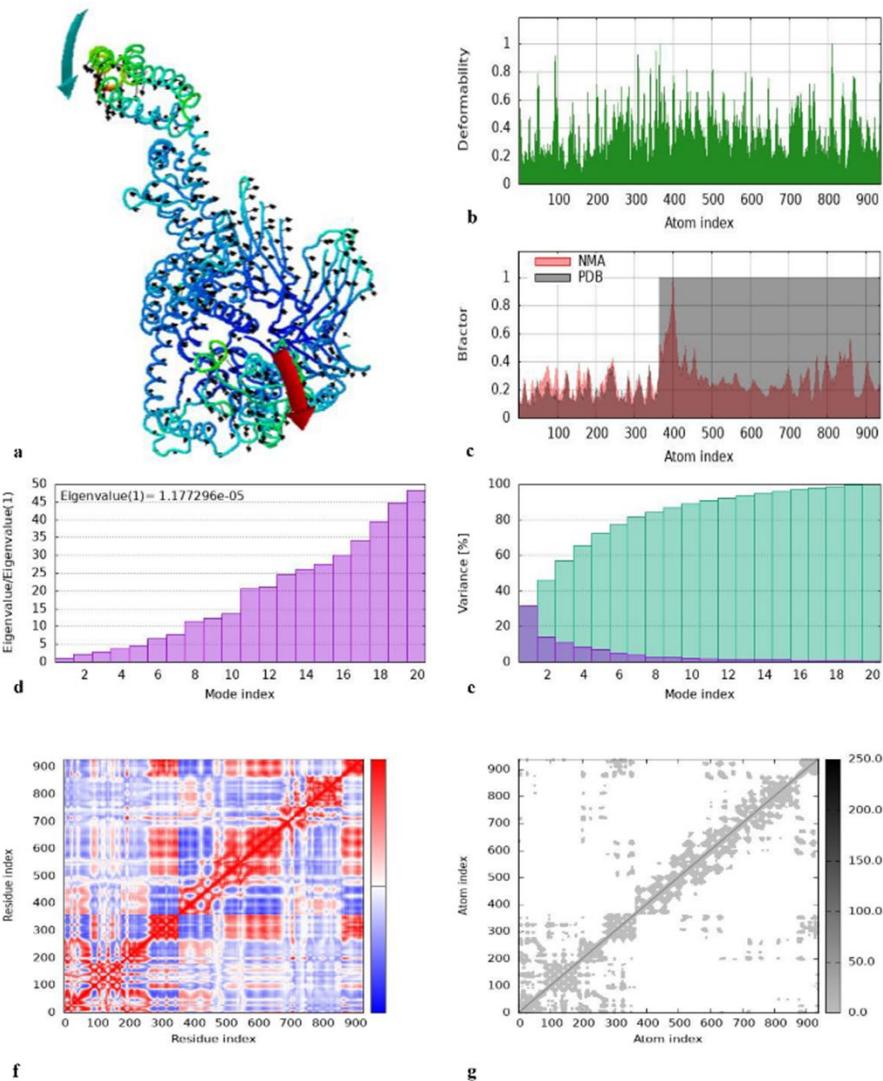
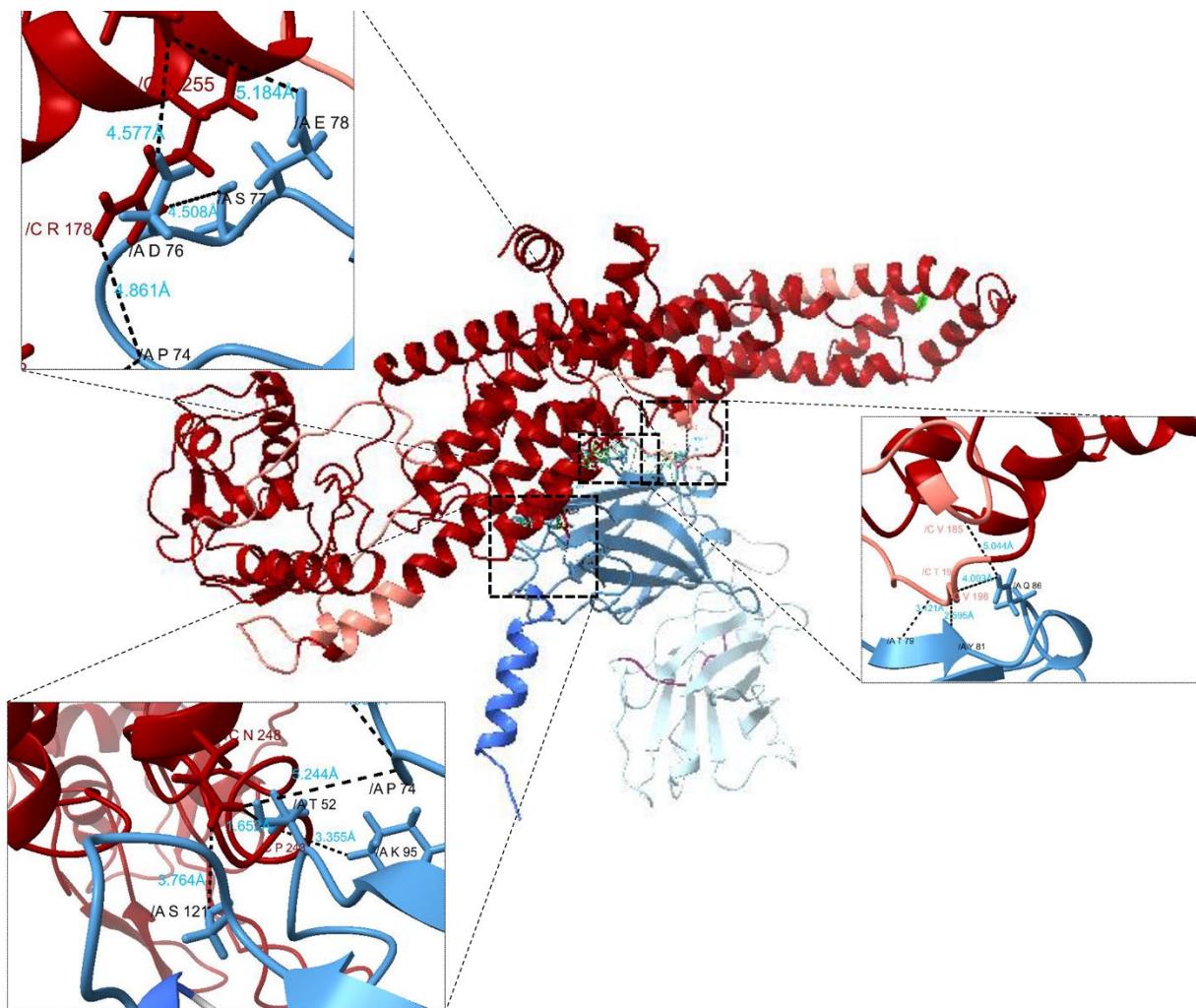

Figure S26. The dynamics simulation analysis of HLA-A*68:01-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

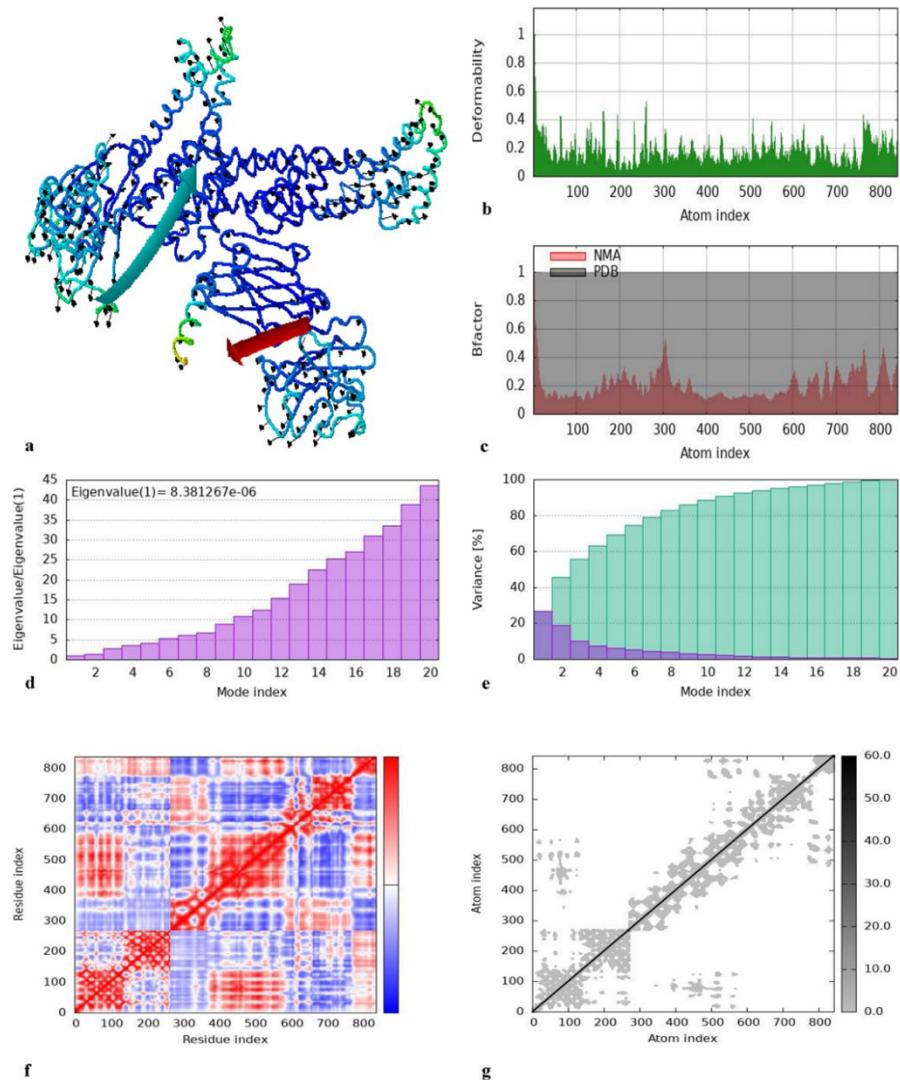
Figure S27. The dynamics simulation analysis of HLA-B*35:01-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

Figure S28. The dynamics simulation analysis of HLA-DRB1*01:01-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

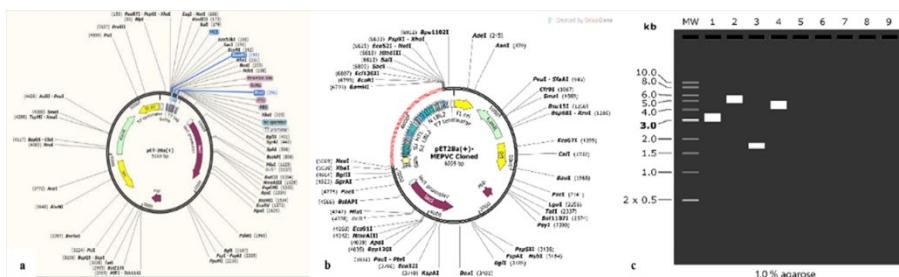
Figure S29. The dynamics simulation analysis of HLA-DRB1*09:01-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

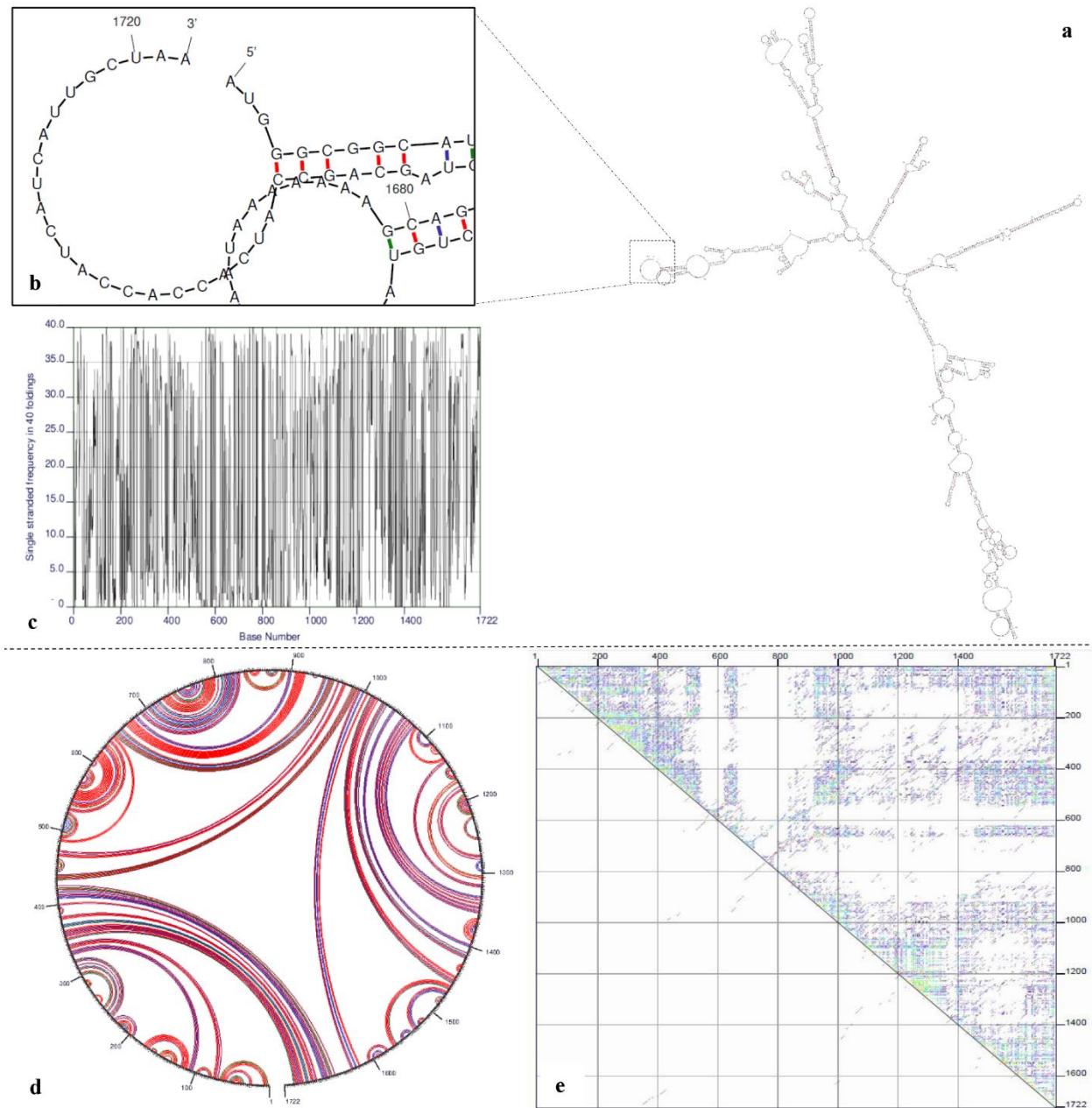

Table S17. Analysis of possible H-bonds and salt-bridges via molecular docking between ACE2-anti-SARS-CoV-2-MEV in docked complex

Residue No.	Atom name	Residue No.	Atom name	D-H...A Distance (Å)	H-bond type according to (34) ⁴⁷
ACE2			MEV		
ASN137	ND2	ASP469	O	3.809	Weak
GLN139	NE2	ASP469	OD2	3.180	Weak
GLU140	OE1	ALA477	N	4.891	Weak
CYS141	O	ASP481	N	3.890	Weak
LEU143	O	LYS467	NZ	3.899	Weak


GLN145 (Hbond and salt bridge)	OE2	LYS429	NZ	3.704	Weak
PRO146	O	THR438	N	4.675	Weak
GLY147	O	LEU437	N	3.530	Weak
	O	THR438	N	3.997	Weak
ASN149	N	LEU433	O	4.138	Weak
	N	ASP481	OD1	4.197	Weak
	ND2	ASN432	OD1	4.346	Weak
	ND2	LEU433	O	3.688	Weak
	O	LYS441	NZ	4.134	Weak
GLU150	O	LYS441	N	3.272	Weak
	N	LEU433	O	4.509	Weak
	O	TYR442	N	5.152	Weak
	O	LYS450	NZ	4.896	Weak
	OE2 (Hbond and salt bridge)	LYS450	NZ	3.817	Weak
	N	ASP481	OD1	4.977	Weak
ILE151	N	ALA480	O	4.731	Weak
	O	ASN440	N	4.843	Weak
	O	ASN449	ND2	4.289	Weak
	O	LYS450	NZ	4.832	Weak
ALA153	O	GLN444	NE2	4.220	Weak
ASN154	N	LYS435	O	5.032	Weak
	ND2	SER443	O	2.169	Strong
	O	LEU445	N	3.981	Weak
LEU156	N	GLU447	OE2	3.355	Weak
ASP157	N	GLU447	OE2	3.558	Weak
GLU160	OE2 (Hbond and salt bridge)	LYS450	NZ	2.860	Strong
	OE1	ALA480	N	4.730	Weak
ASR161	NH1	LEU437	O	4.126	Weak
LEU162	O	LYS479	NZ	4.010	Weak
SER167	OG	LYS479	NZ	0.714	Very strong
HIS265	O	LYS441	NZ	5.151	Weak
PHE274	O	LYS441	NZ	5.017	Weak
THR276	O	ARG365	NH1	4.453	Weak
	O	ARG365	NH2	2.996	Strong
ASN277	O	ARG365	NH1	4.481	Weak
SER280	OG	ASN440	O	5.273	Weak
GLN287	NE2	GLN391	OE1	3.888	Weak
	O	GLN391	NE2	5.111	Weak
ASN290	O	ARG378	NH1	3.669	Weak
ASP292	OD1	LYS368	N	3.446	Weak
	OD2	LYS368	N	4.590	Weak
	OD2	SER374	OG	4.510	Weak
	O	LYS375	N	2.325	Very strong
VAL293	N	LYS366	O	4.827	Weak
THR294	N	LYS366	O	4.370	Weak
	O	THR337	N	2.965	Strong
	O	THR337	OG1	3.639	Weak
ASP295	O	TYR335	N	3.924	Weak
	O	GLN336	N	3.850	Weak
	O	THR337	N	3.914	Weak
ALA296	N	GLU372	OE1	5.098	Weak
	P	LYS376	NZ	5.037	Weak
MET297	N	SER369	O	4.679	Weak
VAL298	N	SER369	O	4.279	Weak
ASP299	OD1	VAL342	N	4.460	Weak
GLN300	NE2	LYS330	O	5.088	Weak
ALA301	N	THR337	O	2.819	Strong
TRP302	N	THR337	O	4.315	Weak
	NE1	LYS332	O	4.813	Weak
ARG306	NH1	LYS332	O	5.135	Weak
ASP335	O	LYS410	NZ	4.441	Weak
ASN338	ND2	LYS409	O	2.149	Very strong

	ND2	LUE486	O	2.911	Strong
	ND2	HIS488	O	4.085	Weak
LYS341	NZ	GLY405	O	5.547	Weak
	NZ	LEU486	O	3.790	Weak
CYS344	N	LYS429	O	4.466	Weak
LEU359	O	LYS428	NZ	5.035	Weak
VAL364	O	THR337	OG1	3.956	Weak
	O	SER369	N	0.905	Very strong
	O	LYS427	NZ	5.013	Weak
MET366	N	SER369	O	4.939	Weak
ASP368 (Hbond and salt bridge)	OD1	LYS366	NZ	2.200	Very strong
	OD1	LYS368	NZ	1.850	Very strong
	OD1	LYS428	NZ	4.569	Weak
	OD2	LYS368	NZ	2.611	Very strong
	OD2	LYS428	NZ	4.528	Weak
PHE369	N	LYS367	O	2.224	Very strong
LEU370	N	LYS367	O	3.977	Weak
THR371	OG1	LYS366	NZ	1.488	Very strong
SER409	O	LYS367	NZ	4.709	Weak
THR414	O	LYS367	NZ	4.249	Weak
GLY422	O	LYS376	NZ	4.166	Weak
SER425	OG	LYS380	NZ	4.617	Weak
ASP427 (Hbond and salt bridge)	OD2	LYS380	NZ	4.576	Weak
	O	GLN379	NE2	4.949	Weak
LYS441	NZ	ARG365	O	3.854	Weak


^aD-H..A dist.: Hydrogen (H) of donor (D)-acceptor (A) distance


Figure S30. Analysis of molecular docking between scFv-anti-SARS-CoV-2 MEV in docked complex using UCSF ChimeraX [Vaccine construct in dark red, scFv in blue; salt bridges and hydrogen bonds are displayed in cyan and black, respectively].

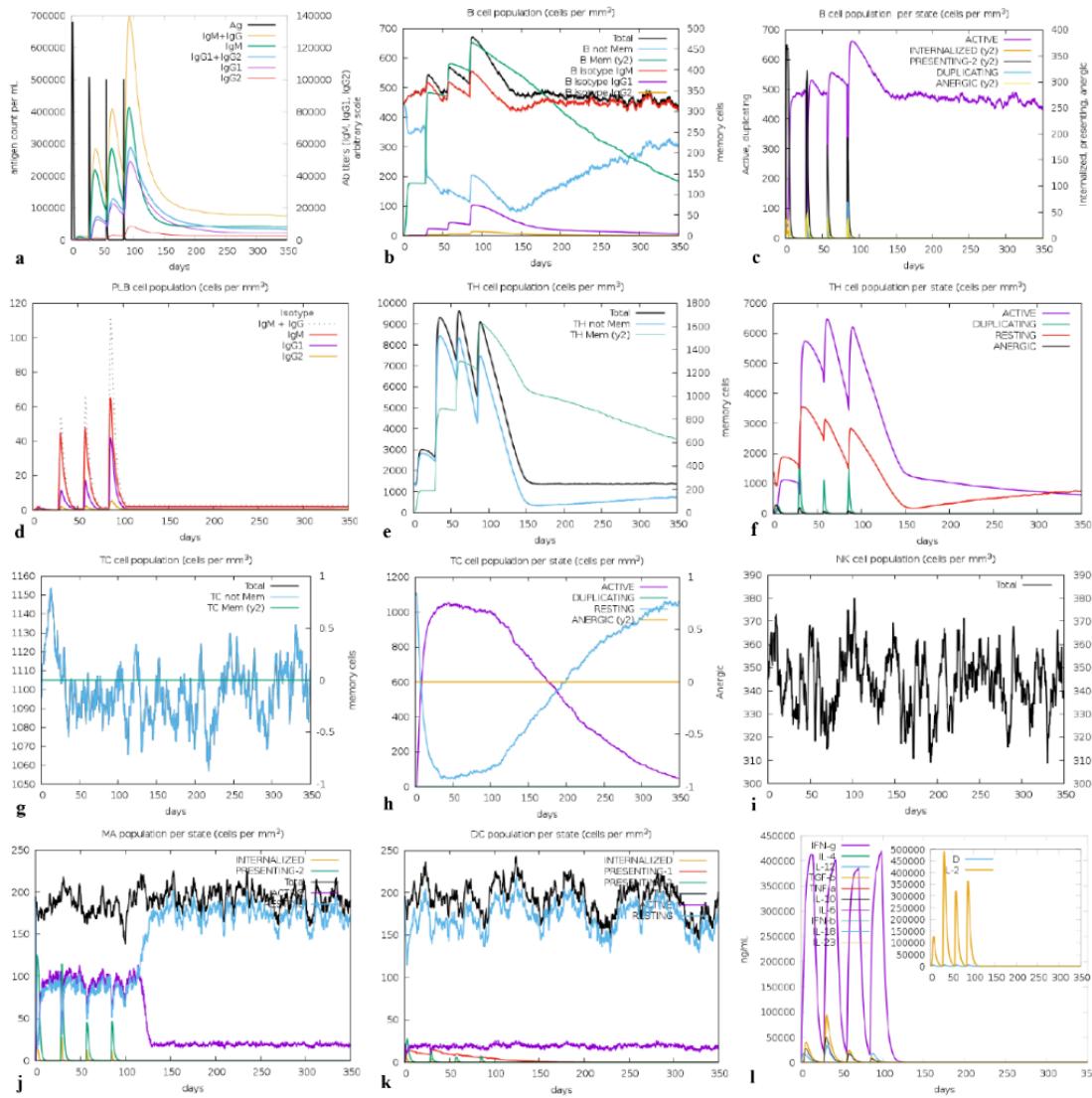

Figure S31. The dynamics simulation analysis of scFv-MEV complex. **(a)** 3D structure of conformational dynamic motion; **(b)** deformability graph; **(c)** b-factor graph; **(d)** eigenvalue; **(e)** variance map (the green and colored columns show the cumulative and individual variances, respectively); **(f)** covariance matrix (The red, blue, and white colors show the correlated, un-correlated, and anti-correlated motions of each residue pairs, respectively); and **(g)** elastic network model (The darker grey dots show a more stiffness of connection between pair of atoms).

Figure S1. In-silico cloning of anti-SARS-CoV-2 MEV by SnapGene®. **(a)** pET28a(+) vector with highlighted Res for cloning; **(b)** cloned pET28a(+) anti-SARS-CoV-2 MEV (the construct was shown in red); **(c)** simulation of agarose electrophoresis: **1:** 1kb DNA ladder; **2:** pET28a(+); **3:** designed MEV; **4:** pET28a(+) anti-SARS-CoV-2 MEV (~6995bp).

Figure S33. Analysis of mRNA structure of MEV. **(a)** Full mRNA secondary structure; **(b)** The 5' and 3' ends of mRNA structure showed no hairpin or pseudoknots; **(c)** Frequency of single-stranded (ss) structure in MEV sequence; graphical view **(d)** and dot plot **(e)** representation of mRNA structure. In part d, G-C, A-U, G-U, and other arcs are shown in red, blue, green, and yellow, respectively.

Figure S34. The immune simulation results of designed anti-SARS-CoV-2 vaccine using c-ImmSim during the four vaccinations with 28 days intervals. **(a)** the positive change in immunoglobulins amounts; **(b-c)** B-cell responses to vaccinations; **(e-f)** variation in T_H population and state during vaccination; **(g-h)** variation in T_C population and state during vaccination; **(i)** variation in NK cell population; **(j-k)** the positive changes in population of macrophages (MA) and dendritic cell (DCs), as the APCs, during the vaccination; **(l)** the cytokine- and interleukin-inducing ability of the vaccine construct.