

AJCMI

Avicenna Journal of Clinical Microbiology and Infection

Avicenna J Clin Microbiol Infect. 2025;12(4):220-230. doi:10.34172/ajcmi.3627

http://ajcmi.umsha.ac.ir

Review Article

Epidemiology and Etiology of Bacterial Meningitis in Iran: A Systematic Review and Meta-analysis

Mohammad Hossein Ekvan¹, Omid Raiesi², Muhammad Ibrahim Getso³, Masoume Karimi⁴, Somayeh Mohamadi¹, Amir Hossein Ahmadi¹, Maryam Kord¹, Sara Tabar¹

- ¹Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- ²Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- ³Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, PMB, 3011, Kano, Nigeria
- ⁴Department of Epidemiology, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran

Article history:
Received: March 19, 2025
Revised: April 21, 2025
Accepted: April 23, 2025
ePublished: November 22, 2025

*Corresponding author:

Omid Raiesi, Email: o.raissi69@gmail.com

Abstract

Background: Meningitis is a life-threatening disease that can manifest as acute, subacute, or chronic. This disease is characterized by various symptoms such as fever, nausea, and stiff neck. It can be caused by infectious (bacteria, viruses, fungi, and parasites) and non-infectious (drugs, neoplasms, and systemic diseases) agents. Bacterial meningitis, the deadliest type of meningitis, was the focus of this systematic review and meta-analysis, which aimed to examine the epidemiology and etiology of bacterial meningitis in Iran.

Methods: PubMed (Medline), Scopus, Web of Science, and ProQuest were searched for English articles and the Scientific Information Database and Magiran for Persian articles up to January 25, 2024. A total of 2240 articles were screened, and 58 articles were selected. Then, 51 studies were included in the epidemiological analysis and 48 in the etiological analysis.

Results: The pooled hospital-based prevalence of meningitis in Iran was 16.48%. *Streptococcus pneumoniae* was responsible for 27.89% of meningitis cases in Iran and was the main cause of bacterial meningitis. Other common bacteria included *Haemophilus influenzae* (15.96%), *Staphylococcus epidermidis* (15.88%), and *Klebsiella pneumoniae* (15.56%). Fever was observed in 89.37% of patients, while nausea, neck stiffness, vomiting, and headache were also common manifestations, affecting approximately half of the patients.

Conclusion: These findings highlight the importance of vaccination, especially against *pneumococcus*, and improved diagnostic practices. The results also underscore the need for stronger surveillance systems and expanded population coverage to enhance public health interventions and reduce the burden of bacterial meningitis in Iran.

Keywords: Bacterial, Meningitis, Systematic review, Mata-analysis, Iran

Please cite this article as follows: Ekvan MH, Raiesi O, Getso MI, Karimi M, Mohamadi S, Ahmadi AH, et al. Epidemiology and etiology of bacterial meningitis in Iran: a systematic review and meta-analysis. Avicenna J Clin Microbiol Infect. 2025;12(4):220-230. doi:10.34172/ajcmi.3627

Introduction

Meningitis is the inflammation of any of the three meningeal layers surrounding the brain or spinal cord, accompanied by pleocytosis in the cerebrospinal fluid (CSF). Meningitis is classified as acute (≤ 5 days), subacute (≤ 5 days), and chronic (≥ 4 weeks) (1-3). This condition is typically accompanied by fever, nausea, stiff neck, and headache (4). Other clinical manifestations may include changes in mental status, altered level of consciousness, seizures, photophobia, and skin rashes (5,6). CSF analysis is required for a definitive diagnosis (7-9). Meningitis can be caused by infectious agents (bacteria, viruses, fungi, and protozoa) or non-infectious causes (drugs,

neoplasms, and some systemic diseases). If bacteria are found in CSF, it is called bacterial meningitis; otherwise, it is called aseptic meningitis (10,11). In 3approximately 0 to 65% of cases, the definitive cause of aseptic meningitis is unidentified (12).

According to the Centers for Disease Control and Prevention (CDC), viral and then bacterial infections are the most common causes of meningitis, with bacterial meningitis being the most dangerous type. If untreated, bacterial meningitis can be fatal in up to 50% of cases. Even with prompt treatment, 8 to 15% of patients may die within two days of symptom onset (13). The etiology of bacterial meningitis varies depending on age and regional microbial

© 2025 The Author(s); Published by Hamadan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

flora. A review study conducted in 2015 examined articles related to acute meningitis in Iran and revealed that *Streptococcus pneumoniae*, *Haemophilus influenzae* type b, coagulase-negative *Staphylococcus aureus*, and *Neisseria meningitidis* were the most common causative agents (14). Another study identified *S. pneumoniae* and *N. meningitidis* as the most common bacteria causing the disease (15). This systematic review and meta-analysis aimed to achieve two main objectives: (1) to estimate the pooled prevalence of bacterial meningitis in Iran, and (2) to determine the most common bacterial species causing meningitis in Iran. In addition, the review will examine clinical manifestations presented in the included articles.

Methods

A systematic search was conducted to identify articles related to patients with bacterial meningitis in Iran. The protocol for this study was registered in Prospero (Registration number: CRD42024507783) on February 17, 2024. Relevant articles were identified using keywords such as "meningitis", "bacterial", and "Iran" along with their synonyms, as MeSH terms, in the title, abstract, and keywords. The international databases PubMed (Medline), Scopus, Web of Science, and ProQuest were searched until January 25, 2024. The search strategy for PubMed was as follows: ((((Meningit*[MeSH Terms]) OR (Pachymeningit*[MeSH Terms])) OR ((Meningit*[tiab]) OR (Pachymeningit*[tiab]))) AND (((Bacteria*[MeSH Terms]) (Eubacteria*[MeSH OR Terms])) ((Bacteria*[tiab]) OR (Eubacteria*[tiab])))) AND (Iran*). Additionally, local databases such as the Scientific Information Database and the Magiran database were searched for Persian articles using the same search strategy and similar Persian keywords. Then, Google Scholar and the latest relevant review article (14) were searched to maximize the number of relevant articles.

Inclusion and Exclusion Criteria

All English and Persian articles related to the epidemiology and etiology of bacterial meningitis in Iran were included in the study, with no time limit applied. Articles were excluded if: (a) They were letters to the editor, reviews, intervention studies, cohort studies, or case-control studies; (b) They did not use a standard CSF test for diagnosis; (c) They involved patients with abnormal immune systems (e.g., patients with HIV, agranulocytosis, and the like); or (d) Studies that focused on the identification of one specific bacterial species.

Screening Process

All articles from the search results were entered into EndNote 21 software. After removing duplicate articles, two independent researchers screened the articles in three stages based on title, abstract, and full text. Any disagreements in the final selection of articles were resolved through consultation between two researchers, with the opinion of a third researcher sought if necessary.

Data Extraction

Two independent researchers performed data extraction. The extracted data included title, first author, year of publication, study location, study period, total number of samples, number of confirmed cases, type of meningitis, and the etiologic agent of meningitis. Other data extracted from the articles included clinical manifestations and/or drug resistance. These data were only analyzed if reported in at least 10% of the articles.

Quality Assessment

For quality assessment, two independent researchers used a modified version of the Newcastle-Ottawa Scale, specifically adapted for cross-sectional studies, as applied in a previous study (16). This version was originally adapted from the Newcastle-Ottawa Scale for cohort studies to suit cross-sectional designs, and it included seven questions across three domains: selection, confounders, and exposure. The domains covered key elements such as sampling strategy, response rate, exposure assessment, and statistical reporting. The total score ranged from 0 to 10. Studies were classified based on their total score as follows: very good (9-10 points), good (7-8 points), satisfactory (5-6 points), and unsatisfactory (0-4 points). Articles categorized as "unsatisfactory" were excluded from the study. Any disagreements between reviewers were resolved by a third independent researcher.

Meta-Analysis

Data analysis was conducted using Stata 11 software. The Metaprop command was used to calculate the pooled prevalence along with a 95% confidence interval (CI), results of which were presented in a forest plot. To assess the heterogeneity of studies, the Chi-square test and the I² index were used. Based on the Hygienist classification, studies with an I2 index heterogeneity rate of more than 75% were considered in the very high heterogeneity category, 50-75% in the high heterogeneity category, 25-50% in the moderate heterogeneity category, and less than 25% in the low heterogeneity category. If the I2 index was higher than 50%, a random-effects model using the DerSimonian and Laird method was used to estimate the pooled prevalence. Additionally, meta-regression was used to investigate the sources of heterogeneity in the results. The "metabias" command was used to check for publication bias, based on the results of the Egger test. In the case of observed bias, prevalence rates were corrected using the "metatrim" command with the "trim-and-fill" method. A significance level of 0.05 was set for all analyses.

Results

A total of 2240 articles were identified through a search of six databases, including the most recent relevant study (14), as depicted in Figure 1. After removing 543 duplicate articles, we screened 1697 articles. We excluded 1,313 articles in the first stage and 277 articles in the second stage, and reviewed the full text of 107 articles.

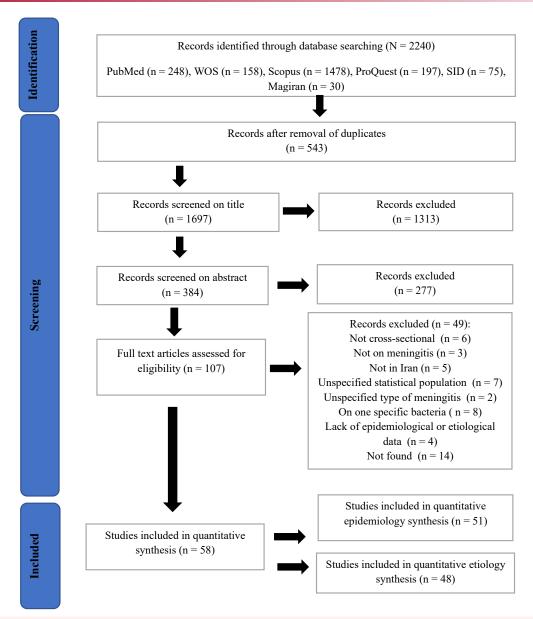


Figure 1. Search Flow Diagram and Article Screening

Finally, we excluded 49 additional articles and found 58 articles eligible for inclusion in this review, including 10 articles in Persian and 48 articles in English. Of these, 52 articles were included in the epidemiological analysis, while 48 articles were included in the etiological analysis (Figure 2). The studies covered 17 different cities. Most of the articles were from Tehran (n=26), all of which were hospital-based studies. All diagnoses were confirmed by bacterial culture from CSF. If diagnosed using other methods, only samples with positive bacterial culture of CSF were included in this review. The primary objective of the study was to conduct categorical analyses based on acute, subacute, and chronic types. However, this was limited by the small number of studies on subacute and chronic types, as well as the lack of specification regarding meningitis types in many articles, making it impossible to separate these cases. Thus, all study data were examined cumulatively.

Epidemiology of Bacterial Meningitis

In this section, we included 51 articles collected from 17 different cities (Table 1). A total of 107766 cases were examined, of which 4062 were diagnosed with bacterial meningitis. As all studies were conducted in hospital settings, the resulting epidemiological data reflect a hospital-based perspective. Therefore, we were unable to estimate the broader community epidemiology. The epidemiology of bacterial meningitis in Iranian hospitals was 16.48% (95% CI: 13.70 - 19.46; I²: 99.16%), as illustrated in Figure 3. Patients ranged from infants to adults over 65 years, with approximately half being under 6 years old and 90% under 18 years. The prevalence in different studies ranged from 74% (17) to 0.14% (18). This epidemiological overview covered 25 years. The oldest article was published in 1998 (19), while the most recent studies appeared in 2022 (20-23). Most studies (n=33)were published within the last decade (2013-2023).

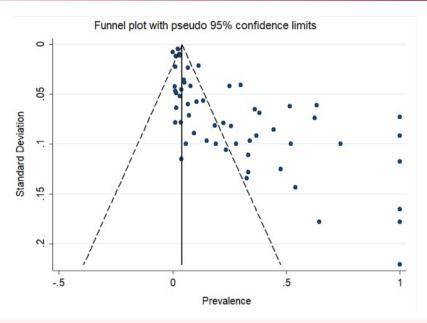


Figure 2. Funnel Chart for Imported Articles

Etiology of Bacterial Meningitis

In this section, we included 48 articles, 41 of which overlapped with the epidemiology section, and 7 articles (68-74) specifically examined etiology. A total of 1787 gram-positive and 1376 gram-negative bacteria were identified morphologically. Bacteria reported only as a genus (e.g., Enterococcus, Klebsiella, or Acinetobacter) without a species name were excluded from the analysis. S. pneumoniae, H. influenza (mostly type b), N. meningitides, and Escherichia coli were reported in more than 60% of the articles. Table 2 lists bacterial species identified in at least five articles. S. pneumoniae was the cause of 27.89% of cases across 32 studies and was identified as the main cause of bacterial meningitis in Iran. Other frequently reported bacteria included H. influenza, Staphylococcus epidermidis, Klebsiella pneumoniae, N. meningitidis, and Streptococcus agalactiae.

Clinical Manifestations

As shown in Table 3, fever was the most common symptom, observed in 89.37% of patients with meningitis. Nausea, neck stiffness, vomiting, and headache were observed in approximately half of the patients. A quarter (25.42%) of patients had seizures. Other common symptoms, such as jaundice, cerebral edema, cough, and photosensitivity, were reported in fewer than five studies.

Discussion

This review collected information on the epidemiology and etiology of bacterial meningitis in Iran across all age groups. The articles were about all types of meningitis; however, most studies did not specify the subtype of meningitis, which may be due to the lack of clarity about the exact onset of symptoms. Furthermore, bacteria associated with acute meningitis may be seen in non-acute types, making diagnosis difficult (20). However, for several reasons, it can be argued that our results were

related to the acute type of meningitis: (a) Bacteria usually cause acute meningitis; in contrast, subacute and chronic types are mostly associated with fungi, other systemic diseases, and some unusual bacteria (1,75,76). On the other hand, one-third of chronic cases remain undiagnosed, so the number of chronic diagnoses is generally lower (77). (b) Chronic infectious meningitis cases generally occur in immunocompromised individuals, such as HIV patients or those taking immunosuppressive drugs (78). These cases were not included in our article. (c) Mycobacterium tuberculosis, Leptospira, Brucella, and Treponema pallidum are the most commonly known causes of subacute meningitis (75,78). In our search, only two studies reported Brucella, and three reported Mycobacterium tuberculosis. This may be attributed to limited attention given to these bacteria due to the small number of cases and challenges associated with their laboratory culture.

The hospital-associated epidemiology of bacterial meningitis in Iran was 16.48%, which varied significantly between regions and even within cities. In Tehran, reported prevalence ranged from 1.63% to 63.33% (27,37). On the other hand, all four studies conducted in Tabriz reported a prevalence of less than 20% (35,38,40,44). The two studies from Ahvaz showed lower prevalence rates of 13.46% and 7.14% (33, 52). These differences in reporting may be due to variations in population characteristics, sample size, diagnostic accuracy, and hygiene levels across cities. To accurately determine the epidemiology of meningitis in an area, studies with a wide range and large sample sizes must be conducted to obtain reliable data. In a three-year study in Taiwan, among 1803 children under five years of age, 13.5% had bacterial meningitis, which is close to the figure reported in our paper (79).

S. pneumoniae was the predominant species causing bacterial meningitis in Iran. This result is consistent with similar studies published in 2015 (80) and 2017 (14) in

 Table 1. Characteristics of Articles Reviewed on the Prevalence of Meningitis in Iran

First Author	Sampling Area	Published Time	Study Sample	Diagnosis With Meningitis	Prevalence of Meningitis (%)	95% CI
Yousefi Mashouf et al (24)	Hamedan	2013	582	46	7.9	5.84 - 10.40
Ghadimi Moghaddam et al (25)	Yasuj	2019	106	36	33.96	25.04 - 43.80
Samiee-Rad and Karimfar (26)	Ghazvin	2012	567	6	1.06	0.39 - 2.29
Amid et al (19)	Tehran	1998	609	182	29.89	26.27 - 33.69
Ehsanipour et al (27)	Tehran	2005	245	4	1.63	0.45 - 4.13
Ataei et al (28)	Tehran	2005	100	28	28	19.48 - 37.87
Yousefi Mashouf et al (29)	Hamedan	2006	582	146	25.09	21.61 - 28.81
Taheri Kalani et al (30)	Tehran	2006	300	32	10.67	7.41 - 14.72
Haghi-Ashtiani et al (31)	Tehran	2008	1800	121	6.72	5.61 - 7.98
Bahador et al (32)	Kerman	2009	126	12	9.52	5.02 - 16.05
Alavi et al (33)	Ahvaz	2010	312	42	13.46	9.88 - 17.76
Hatami et al (34)	Tehran	2010	793	39	4.92	3.52 - 6.66
Bayat Makoo et al (35)	Tabriz	2010	100	19	19	11.84 - 28.07
Qurbanalizadegan et al (36)	Tehran	2010	161	36	22.36	16.18 - 29.59
Sarookhani et al (17)	Ghazvin	2010	100	74	74	64.27 - 82.26
Ataee et al (37)	Tehran	2011	270	171	63.33	57.28 - 69.09
Ghotaslou et al (38)	Tabriz	2012	277	19	6.86	4.18 - 10.50
Hamedi et al (39)	Mashhad	2012	81	27	33.33	23.24 - 44.68
Hojjati Bonab et al (40)	Tabriz	2012	106	16	15.09	8.88 - 23.35
Rezaeizadeh et al (41)	Tehran	2012	11269	329	2.92	2.62 - 3.25
Mahmoudi et al (42)	Tehran	2013	31	20	64.52	45.37 - 80.77
Rezaei et al (43)	Tehran	2013	55	18	32.73	20.68 - 46.71
Abdinia et al (44)	Tabriz	2014	7112	107	1.5	1.23 - 1.82
Attarpour-Yazdi et al (45)	Tehran	2014	182	114	62.64	55.17 - 69.68
Babamahmoodi et al (46)	Mazandaran	2014	16532	23	0.14	0.09 - 0.21
Heydarian et al (18)	Mashhad	2014	453	5	1.1	0.36 - 2.56
Tavasoli et al (47)	Tehran	2014	422	7	1.66	0.67 - 3.39
Bagheri-Nesami et al (48)	Mazandaran	2015	137	61	44.53	36.04 - 53.25
Moayedi et al (49)	Bandar Abbas	2015	100	6	6	2.23 - 12.60
Motamedifar et al (50)	Shiraz	2015	2229	255	11.44	10.15 - 12.83
Shirani et al (51)	Esfahan	2015	2229	6	3.7	1.37 - 7.89
Amin et al (52)	Ahvaz	2016	196	14	7.14	3.96 - 11.69
Farahani et al (53)	Arak	2016	150	28	18.67	12.78 - 25.84
Jesri et al (54)	Iran	2016	8411	250	2.97	2.62 - 3.36
Moafi et al (55)	Ghazvin	2016	680	35	5.15	3.61 - 7.09
Vakili et al (56)	Yazd	2016	261	135	51.72	39.17 - 68.63
Mofidi et al (57)	Tehran	2017	48	26	54.17	39.17 - 68.63
Sanaei Dashti et al (58)	Tehran	2017	370	12	3.24	1.69 - 5.60
Berangi et al (59)	Hamedan	2019	48006	1135	2.36	2.23 - 2.50
Hadi et al (60)	Shiraz	2019	89	21	23.6	15.24 - 33.78
Pormohammad et al (61)	Tehran	2019	119	44	36.97	28.31 - 46.31
Boskabadi et al (62)	Mashhad	2020	234	85	36.32	30.16 - 42.84
Kashaki et al (63)	Tehran	2020	75	3	4	0.38 - 11.25
Saboute et al (64)	Tehran	2020	163	2	1.23	0.15 - 4.36
Hemmati et al (65)	Ghazvin	2021	212	81	38.21	31.64 - 45.11
Mirjalili et al (66)	Tehran /Karaj	2021	148	38	25.68	18.85 - 33.50
Zeighami et al (67)	Zanjan	2021	100	52	52	41.78 - 62.10
Bineshfar et al (20)	Kerman	2022	2050	25	1.22	0.79 - 1.80
Farokhnia et al (21)	Kerman	2022	60	20	33.33	21.69 - 46.69
Pouladfar et al (22)	Shiraz	2022	492	19	3.86	2.34 - 5.97
Sherkatolabbasieh et al (23)	Khorramabad	2022	63	30	47.62	34.88 - 60.59

Note. CI: Confidence interval.

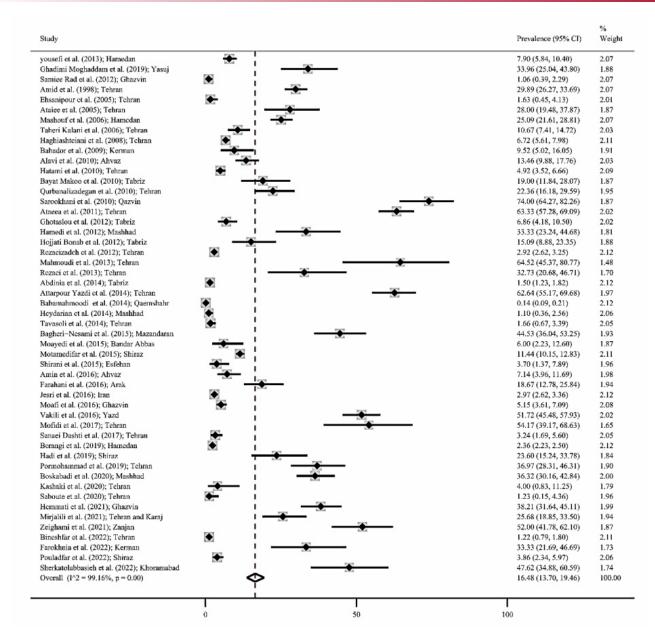


Figure 3. Forest Plot of Prevalence of Meningitis in Iran

Iran. In general, this bacterium has long been recognized as a major cause of bacterial meningitis (15,81,82). Similarly, H. influenzae was the second most common species in Iran, with a frequency of 15.96%. Although this bacterium is still a common strain of meningitis (82), its prevalence continues to decline. In the past, H. influenzae was the most frequently reported bacterium in meningitis cases; however, with the introduction of vaccination, its incidence has decreased (83). It should be noted that the pneumococcal vaccine for S. pneumoniae is available in Iran, but its administration is not mandatory within the country's health program (84). Based on the report in this article and the notably high prevalence of this bacterium among meningitis patients, vaccination is recommended for all children in Iran. Although S. epidermidis and Klebsiella pneumoniae were reported in a limited number of studies, they accounted for more than 15% of the cases

in those studies. Coagulase-negative staphylococci have also been identified as serious bacteria in cases of bacterial meningitis in Iran (14,80), but the specific species were not always mentioned. This article highlights *S. epidermidis* as the most important species. Given that *S. epidermidis* is a major cause of hospital-acquired infections, it can be inferred that most patients may have been infected in the hospital (85). Other species of this group, such as *S. haemolyticus* and *S. saprophyticus*, were also reported in the reviewed articles.

The prevalence of *K. pneumoniae* was found to be higher than previously reported. This increase might be due to the inclusion of a larger number of adult patients in this review, as this bacterium is recognized as a major cause of meningitis in adults (86). Furthermore, the reduction in incidence of primary causative agents of bacterial meningitis due to widespread vaccination may have led

to an increase in the reported prevalence of other bacteria.

Neisseria meningitidis is a leading cause of bacterial meningitis in many parts of the world, especially in America, Europe, and Africa (6,15). However, it is less prevalent in Iran. This article reported a rate of 13.13%, which is consistent with other previous studies in Iran, showing prevalence rates of 13% (14) and 10.5% (80). This could be due to three reasons: (a) N. meningitidis is commonly seen in meningitis among young adults, while Iranian studies often do not focus on this age group (87). (b) Most cases of *N. meningitidis* are reported in the meningitis belt of Africa. Given the differences in climate, ethnicity, and healthcare infrastructure between Iran and these countries, differences in the predominant types of meningitis are not surprising (88). (c) The development of the meningococcal vaccine has naturally led to a reduction in the rate of its infection .(59) S. agalactiae and *E. coli* were also significantly reported in Iran. Given that there is no vaccine in the national health program for meningitis caused by these two bacteria (13,89), it can be predicted that their prevalence may increase in the future.

Table 2. The Most Common Types of Bacterial Meningitis in Iran

Organism	Study Number	Prevalence (CI 95%)	P Value	I ² %
S. pneumoniae	38	27.89 (23.26 - 32.74)	< 0.001	85.23
H. influenzae	36	15.96 (12.21 - 20.06)	< 0.001	83.59
S. epidermidis	7	15.88 (5.35 - 30.27)	< 0.001	94.97
K. pneumoniae	8	15.56 (6.61 - 27.01)	< 0.001	88.39
N. meningitidis	29	13.13 (9.27 - 17.48)	< 0.001	88.27
S. agalactiae	6	11.42 (6.15 - 17.96)	< 0.001	77.33
E. coli	25	7.07 (4.84 - 9.61)	< 0.001	66.49
S. aureus	16	6.15 (4.09 - 8.52)	< 0.001	57.34
P. aeruginosa	15	4 (2.49 - 5.76)	< 0.001	47.21

Note. Cl: Confidence interval; S. pneumoniae: Streptococcus pneumoniae; H. influenzae: Haemophilus influenzae; S. epidermidis: Staphylococcus epidermidis; K. pneumoniae: Klebsiella pneumoniae; Neisseria meningitidis: N. meningitidis; S. agalactiae: Streptococcus agalactiae; E. coli: Escherichia coli; S. aureus; Staphylococcus aureus; P. aeruginosa; Pseudomonas aeruginosa.

It should be noted that *S. agalactiae* is now considered one of the leading causes of meningitis, especially in children (90,91).

In a 2015 review conducted in Iran, Enterobacter was reported as the third most common cause of meningitis, accounting for 12.24% of cases (80). In our study, a significant number of articles mentioned Enterobacter but not a specific species. Listeria monocytogenes was uncommon in this review, likely because this bacterium more commonly causes meningitis in infants, patients over 50 years of age, and those with weakened immune systems (91). The clinical manifestations are usually similar across different types of meningitis. In this review, fever was observed in about 90% of patients. About 50% of cases presented with nausea, neck stiffness, vomiting, and headache, in respective order of frequency. The classical triad of meningitis (i.e., fever, stiff neck, and altered mental status) is most commonly observed in people over 60 years of age and occurs in only 40% of cases overall (92). The triad, along with headache, constitutes the classical manifestations of meningitis, and nearly every patient presenting with at least two of these symptoms (93). The high incidence of nausea and vomiting in this review may be due to the younger age of most patients, as these symptoms are more common in children (6,14). This pattern is to some extent similar to a study conducted on Iranian children with bacterial meningitis, in which fever was reported in 71% of cases and nausea and vomiting in 67%, which supports our findings (14). Another study on bacterial meningitis across all age groups reported fever in 95% of cases, vomiting in 57%, and seizures in only 12%. Across all studies, fever remains the most consistent clinical symptom (94).

A study of bacterial meningitis in adults (6) reported headache and neck stiffness frequently (in more than 80% of cases) and seizures in only 5%. In this review, 25% of patients had seizures, indicating a higher seizure prevalence in children than in adults with meningitis. Altered mental status was not widely reported in our study. Sleepiness, restlessness, and irritability were observed in some patients as nonspecific neurological symptoms, which are also seen in younger meningitis patients.

Limitations

This study has several limitations. First, a significant

Table 3. Prevalence of Clinical Manifestations in Patients with Bacterial Meningitis

Table 3. Trevalence of emilical Mannesattons in Faticus With Sacterial Memilyats							
Clinical Manifestation	Study Number	Diagnosis With Meningitis	Patient With Manifestation	Prevalence (95% CI)	Weight (%)	l ²	<i>P</i> value
Headache	8	538	199	44.04	11.21	94.10	< 0.001
Nausea	6	419	216	55.81	10.96	92.55	< 0.001
Vomiting	5	362	164	46.58	6.84	94.53	< 0.001
Neck stiffness	6	288	125	50.60	5.75	93.99	< 0.001
Fever	9	566	511	89.37	46.67	90.12	< 0.001
Seizure	9	493	108	25.42	18.57	91.36	< 0.001

Note. CI: Confidence interval.

number of bacterial reports (over 500) lacked specieslevel identification, being reported only at the genus level or left unspecified. These cases were excluded from the analysis, which may have introduced bias and reduced the statistical power of the findings. Second, most of the included studies were conducted in Tehran, while data from many other cities were either limited or unavailable. Given the differences in climate, cultural practices, and hygiene standards across various regions of Iran, the lack of comprehensive geographic representation may have influenced the generalizability of the results. Lastly, inclusion in this review required a positive CSF culture result. Although CSF culture is considered the gold standard for diagnosing bacterial meningitis, it has a reported false-negative rate of 10-30% (81, 94). Therefore, some cases of bacterial meningitis may have been missed, potentially underestimating the true burden of the disease.

Conclusion

This article provides valuable insights into the burden and etiology of hospital-based bacterial meningitis in Iran. The results highlight the need for vaccination and improved diagnostic efforts to identify regional differences and address healthcare inequalities. To better understand the national burden of disease, future studies should not be limited to hospitalized cases but should also include population-based data from across the country. Moreover, implementing and evaluating nationwide vaccination strategies, especially against pneumococcal disease, alongside strengthening surveillance systems and broadening study coverage, could substantially improve prevention efforts and inform more effective public health planning.

Authors' Contribution

Conceptualization: Omid Raiesi, Mohammad Hossein Ekvan. Data curation: Mohammad Hossein Ekvan, Somayeh Mohamadi, Maryam Kord, Sara Tabar.

Formal analysis: Masoume Karimi. Funding acquisition: Omid Raiesi.

Investigation: Mohammad Hossein Ekvan, Amir Hossein Ahmadi. **Methodology:** Omid Raiesi, Mohammad Hossein Ekvan.

Project administration: Omid Raiesi.

Resources: Omid Raiesi. Software: Masoume Karimi. Supervision: Omid Raiesi.

Validation: Omid Raiesi, Mohammad Hossein Ekvan, Masoume

Karimi.

Visualization: Omid Raiesi, Mohammad Hossein Ekvan. **Writing–original draft:** Mohammad Hossein Ekvan.

Writing-review & editing: Omid Raiesi, Muhammad Ibrahim

Getso.

Competing Interests

The authors declare that they have no conflict of interests.

Ethical Approval

Not applicable.

Funding

This study was funded by Ilam University of Medical Sciences, Ilam, Iran, under grant number IR.MEDILAM.REC.1402.298.

References

- Coyle PK. Overview of acute and chronic meningitis. Neurol Clin. 1999;17(4):691-710. doi: 10.1016/s0733-8619(05)70162-6.
- Ginsberg L, Kidd D. Chronic and recurrent meningitis. Pract Neurol. 2008;8(6):348-61. doi: 10.1136/jnnp.2008.157396.
- Helbok R, Broessner G, Pfausler B, Schmutzhard E. Chronic meningitis. J Neurol. 2009;256(2):168-75. doi: 10.1007/ s00415-009-0122-0.
- Kumar R. Aseptic meningitis: diagnosis and management. Indian J Pediatr. 2005;72(1):57-63. doi: 10.1007/bf02760582.
- Shukla B, Aguilera EA, Salazar L, Wootton SH, Kaewpoowat Q, Hasbun R. Aseptic meningitis in adults and children: diagnostic and management challenges. J Clin Virol. 2017;94:110-4. doi: 10.1016/j.jcv.2017.07.016.
- van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;351(18):1849-59. doi: 10.1056/NEJMoa040845.
- Doherty CM, Forbes RB. Diagnostic lumbar puncture. Ulster Med J. 2014;83(2):93-102.
- Shokrollahi MR, Shabanzadeh K, Noorbakhsh S, Tabatabaei A, Movahedi Z, Shamshiri AR. Diagnostic value of CRP, procalcitonin, and ferritin levels in cerebrospinal fluid of children with meningitis. Cent Nerv Syst Agents Med Chem. 2018;18(1):58-62. doi: 10.2174/1871524916666160302103 223.
- Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267-84. doi: 10.1086/425368.
- Al-Qahtani SM, Shati AA, Alqahtani YA, Ali AS. Etiology, clinical phenotypes, epidemiological correlates, laboratory biomarkers and diagnostic challenges of pediatric viral meningitis: descriptive review. Front Pediatr. 2022;10:923125. doi: 10.3389/fped.2022.923125.
- Hoffman O, Weber RJ. Pathophysiology and treatment of bacterial meningitis. Ther Adv Neurol Disord. 2009;2(6):1-7. doi: 10.1177/1756285609337975.
- Jarrin I, Sellier P, Lopes A, Morgand M, Makovec T, Delcey V, et al. Etiologies and management of aseptic meningitis in patients admitted to an internal medicine department. Medicine (Baltimore). 2016;95(2):e2372. doi: 10.1097/ md.00000000000002372.
- 13. World Health Organization (WHO). Meningococcal Meningitis: Fact Sheet 2017. WHO; 2017.
- Houri H, Pormohammad A, Riahi SM, Nasiri MJ, Fallah F, Dabiri H, et al. Acute bacterial meningitis in Iran: systematic review and meta-analysis. PLoS One. 2017;12(2):e0169617. doi: 10.1371/journal.pone.0169617.
- 15. Oordt-Speets AM, Bolijn R, van Hoorn RC, Bhavsar A, Kyaw MH. Global etiology of bacterial meningitis: a systematic review and meta-analysis. PLoS One. 2018;13(6):e0198772. doi: 10.1371/journal.pone.0198772.
- Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil Á. Are healthcare workers' intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013;13:154. doi: 10.1186/1471-2458-13-154.
- Sarookhani MR, Ayazi P, Alizadeh S, Foroughi F, Sahmani A, Adineh M. Comparison of 16S rDNA-PCR amplification and culture of cerebrospinal fluid for diagnosis of bacterial meningitis. Iran J Pediatr. 2010;20(4):471-5.
- 18. Heydarian F, Ashrafzadeh F, Rostazadeh A. Predicting factors

- and prevalence of meningitis in patients with first seizure and fever aged 6 to 18 months. Neurosciences (Riyadh). 2014;19(4):297-300.
- Amid MH. A spinal fluid scoring system for differentiation of bacterial and viral meningitis. J Res Med Sci. 1998;22(3):47-54. [Persian].
- Bineshfar N, Rezaei A, Mirahmadi A, Shokouhi S, Gharehbagh FJ, Haghighi M, et al. Evaluation of the epidemiologic, clinical, radiologic, and treatment methods of patients with subacute and chronic meningitis. BMC Neurol. 2022;22(1):340. doi: 10.1186/s12883-022-02873-1.
- Farokhnia M, Hosseininasab A, Kamali M, Pourabbas B, Taheri Sarvtin M. A study on bacterial agents of patients with meningitis referred to Afzalipour hospital in Kerman, southeast Iran. Int J Med Lab. 2022;9(1):1-5. doi: 10.18502/ijml. v9i1.9080.
- Pouladfar G, Sanaei Dashti A, Kadivar MR, Jafari M, Pourabbas B, Jamalidoust M, et al. Evaluation of multiplex real-time PCR and WHO criteria for diagnosing childhood bacterial meningitis in a tertiary referral hospital in Iran. Arch Pediatr Infect Dis. 2022;10(3):e101822. doi: 10.5812/ pedinfect.101822.
- 23. Sherkatolabbasieh HR, Shakib P, Khademi N, Rezaei F. Epidemiological evaluation of meningitis in hospitalized patients in shahid Madani hospital in Khorramabad. Yafteh. 2022;23(5):41-51. [Persian].
- 24. Yousefi Mashouf R, Hashemi H, Shams S. Study of bacterial agents of meningitis in children and detection of antibiogram patterns in Hamadan. Yafteh. 2004;5(2):31-9. [Persian].
- Ghadimi Moghaddam A, Ghatee MA, Keshtkari A, Shabankareh M. Prevalence of bacterial causes of meningitis and related factors in patients admitted to Imam Sajjad hospital in Yasuj. Armaghane Danesh. 2019;24(5):853-64. [Persian].
- Samiee-Rad F, Karimfar MH. Prevalence of newborn bacterial meningitis in Kosar hospital 2007-2012. J Zabol Univ Med Sci. 2012;4(1):49-57. [Persian].
- 27. Ehsanipour F, Khodapanahandeh F, Aslani Z. The prevalence of meningitis in children with febrile seizure hospitalized at Hazrat Rasoul hospital (1997-2002). Razi J Med Sci. 2005;11(44):907-11. [Persian].
- Ataei RA, Mehrabi TA, Ghorbani GH, Karimi Zarchi AA, Hajia M, Hosseini SM, et al. Determination of bacterial etiology of 100 CSF samples of patients with meningitis at four military hospitals in Tehran between 2003 and 2005. J Mil Med. 2005;7(1):49-56. [Persian].
- Yousefi Mashouf R, Hashemi SH, Bijarchi M. Bacterial agents of meningitis in children and detection of their antibiotic resistance patterns in Hamadan, Western Iran. Pak J Biol Sci. 2006;9(7):1293-8.
- Taheri Kalani M, Akbari Nakhjavani N, Kazemi B, Bonakdar Hashemi F, Haghi-Ashtiani MT, Nouri K, et al. Survey rate isolation of *Heamophilus influenzae* type B in CSF of pediatrics suspected to meningitis by culture and PCR in Tehran Center of Medical Children. Tehran Univ Med J. 2006;63(12):1006-14. [Persian].
- Haghi-Ashtiani MT, Mohammadi-Yeganeh S, Soroush S, Sadeghifard N, Sayadi S, Dabyri H, et al. Frequency and antimicrobial susceptibility of *Haemophilus influenzae* type B isolated from children suspected to meningitis. Iran J Public Health. 2008;37(4):52-8.
- 32. Bahador M, Amini M, Bahador M. Common cause and cerebrospinal fluid changes of acute bacterial meningitis. Iran J Pathol. 2009;4(2):75-9.
- 33. Alavi SM, Moshiri N, Shokri S. Evaluation of epidemiological, clinical and laboratory findings of admitted patients with meningitis in infectious diseases ward of Razi hospital, Ahvaz. Sci Med J. 2010;9(3):221-31. [Persian].
- 34. Hatami H, Hatami M, Soori H, Janbakhsh AR, Mansouri F.

- Epidemiological, clinical, and laboratory features of brucellar meningitis. Arch Iran Med. 2010;13(6):486-91.
- Bayat Makoo Z, Soltani HR, Hasani A, Bayat Makoo R, Mashrabi O. Diagnostic value of serum and cerebrospinal fluid procalcitonin in differentiation bacterial from aseptic meningitis. Am J Infect Dis. 2010;6(4):93-7. doi: 10.3844/ ajidsp.2010.93.97.
- 36. Qurbanalizadegan M, Ranjbar R, Ataee R, Hajia M, Goodarzi Z, Farshad S, et al. Specific PCR assay for rapid and direct detection of *Neisseria meningitidis* in cerebrospinal fluid specimens. Iran J Public Health. 2010;39(4):45-50.
- Ataee RA, Mehrabi-Tavana A, Izadi M, Hosseini SM, Ataee MH. Bacterial meningitis: a new risk factor. J Res Med Sci. 2011;16(2):207-10.
- 38. Ghotaslou R, Farajnia S, Yeganeh F, Abdoli-Oskouei S, Ahangarzadeh Rezaee M, Barzegar M. Detection of acute childhood meningitis by PCR, culture and agglutination tests in Tabriz, Iran. Acta Med Iran. 2012;50(3):192-6.
- 39. Hamedi A, Ayatollahi H, Ataee Nakhaee A. Evaluation of IL-6 and high sensitive C reactive protein value in CSF and serum children suspected meningitis referred to pediatric emergency room. Iran Red Crescent Med J. 2012;14(12):822-5. doi: 10.5812/ircmj.4726.
- 40. Hojjati Bonab Z, Farajnia S, Ghotaslou R, Nikkhah E. Evaluation of nested PCR method for diagnosis of meningitis due to *Neisseria meningitidis* and *Haemophilus influenzae*. Turk J Biol. 2012;36(6):727-31. doi: 10.3906/biy-1111-27.
- 41. Rezaeizadeh G, Pourakbari B, Ashtiani MH, Asgari F, Mahmoudi S, Mamishi S. Antimicrobial susceptibility of bacteria isolated from cerebrospinal fluids in an Iranian referral pediatric center, 1998-2008. Maedica (Bucur). 2012;7(2):131-7.
- 42. Mahmoudi S, Zandi H, Pourakbari B, Ashtiani MT, Mamishi S. Acute bacterial meningitis among children admitted into an Iranian referral children's hospital. Jpn J Infect Dis. 2013;66(6):503-6. doi: 10.7883/yoken.66.503.
- 43. Rezaei M, Mamishi S, Mahmoudi S, Pourakbari B, Khotaei G, Daneshjou K, et al. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis. Br J Biomed Sci. 2013;70(3):101-3. doi: 10.1080/09674845.2013.11669943.
- 44. Abdinia B, Ahangarzadeh Rezaee M, Abdoli Oskouie S. Etiology and antimicrobial resistance patterns of acute bacterial meningitis in children: a 10-year referral hospital-based study in northwest Iran. Iran Red Crescent Med J. 2014;16(7):e17616. doi: 10.5812/ircmj.17616.
- 45. Attarpour-Yazdi MM, Ghamarian A, Mousaviehzadeh M, Davoudi N. Identification of the serotypes of bacterial meningitis agents; implication for vaccine usage. Iran J Microbiol. 2014;6(4):211-8.
- 46. Babamahmoodi F, Davoudi A, Babamahmoodi A, Sepehri Manesh M. Epidemiologic characteristics of patients treated in a referral center with the diagnosis of central nervous system infection in north of Iran, from March 2008 to March 2012: a retrospective observational registry study. Arch Neurosci. 2014;1(2):82-7. doi: 10.5812/archneurosci.13894.
- 47. Tavasoli A, Afsharkhas L, Edraki A. Frequency of meningitis in children presenting with febrile seizures at Ali-Asghar Children's Hospital. Iran J Child Neurol. 2014;8(4):51-6.
- Bagheri-Nesami M, Babamahmoodi F, Nikkhah A. Types, risk factors, clinical symptoms and diagnostic tests of acute adult meningitis in northern Iran during 2006-2012. J Clin Diagn Res. 2015;9(5):IC01-5. doi: 10.7860/jcdr/2015/11991.5936.
- Moayedi AR, Nejatizadeh A, Mohammadian M, Rahmati MB, Namardizadeh V. Accuracy of universal polymerase chain reaction (PCR) for detection of bacterial meningitis among suspected patients. Electron Physician. 2015;7(8):1609-12. doi: 10.19082/1609.
- 50. Motamedifar M, Sedigh Ebrahim-Saraie H, Mansury D,

- Nikokar I, Hashemizadeh Z. Prevalence of etiological agents and antimicrobial resistance patterns of bacterial meningitis in Nemazee hospital, Shiraz, Iran. Arch Clin Infect Dis. 2015;10(2):e22703. DOI: 10.5812/archcid.22703.
- 51. Shirani K, Talaei Z, Yaran M, Ataei B, Mehrabi-Koushki A, Khorvash F. Diagnosed tuberculous meningitis using cerebrospinal fluid polymerase chain reaction in patients hospitalized with the diagnosis of meningitis in referral hospitals in Isfahan. J Res Med Sci. 2015;20(3):224-7.
- Amin M, Ghaderpanah M, Navidifar T. Detection of Haemophilus influenzae type B, Streptococcus agalactiae, Streptococcus pneumoniae and Neisseria meningitidis in CSF specimens of children suspicious of meningitis in Ahvaz, Iran. Kaohsiung J Med Sci. 2016;32(10):501-6. doi: 10.1016/j. kjms.2016.08.009.
- Farahani H, Ghaznavi-Rad E, Mondanizadeh M, MirabSamiee S, Khansarinejad B. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay. Mol Cell Probes. 2016;30(4):261-5. doi: 10.1016/j.mcp.2016.07.002.
- 54. Jesri N, Rezaei F, Saghafipour A, Asghari H, Noroozei M. Spatial analysis of bacterial meningitis in Iran using geographical information system. J Mazandaran Univ Med Sci. 2016;25(132):309-14. [Persian].
- 55. Moafi N, Issazadeh K. Frequency of neonatal and children bacterial meningitis and determining their antibiotic sensitivity patterns in hospitals of Iran. Int J Mol Clin Microbiol. 2016;6(1):608-12.
- Vakili M, Rostami Z, Mirzaei M. Evaluation of the laboratory, epidemiological and clinical characteristics of meningitis patients admitted to the hospitals of Yazd from 2009 to 2013. Int J Med Lab. 2016;3(4):221-8. [Persian].
- 57. Mofidi M, Negaresh N, Farsi D, Rezai M, Mahshidfar B, Abbasi S, et al. Jolt accentuation and its value as a sign in diagnosis of meningitis in patients with fever and headache. Turk J Emerg Med. 2017;17(1):29-31. doi: 10.1016/j.tjem.2016.11.001.
- Sanaei Dashti A, Alizadeh S, Karimi A, Khalifeh M, Shoja SA. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: a cross-sectional study. Medicine (Baltimore). 2017;96(35):e7637. doi: 10.1097/md.00000000000007637.
- 59. Berangi Z, Karami M, Mohammadi Y, Nazarzadeh M, Zahraei SM, Javidrad H, et al. Epidemiological profile of meningitis in Iran before pentavalent vaccine introduction. BMC Pediatr. 2019;19(1):370. doi: 10.1186/s12887-019-1741-y.
- 60. Hadi N, Bagheri K. A five-year retrospective multicenter study on etiology and antibiotic resistance pattern of bacterial meningitis among Iranian children. Infect Epidemiol Microbiol. 2019;5(4):17-24.
- Pormohammad A, Lashkarbolouki S, Azimi T, Gholizadeh P, Bostanghadiri N, Safari H, et al. Clinical characteristics and molecular epidemiology of children with meningitis in Tehran, Iran: a prospective study. New Microbes New Infect. 2019;32:100594. doi: 10.1016/j.nmni.2019.100594.
- Boskabadi H, Heidari E, Zakerihamidi M. Etiology, clinical findings and laboratory parameters in neonates with acute bacterial meningitis. Iran J Microbiol. 2020;12(2):89-97.
- Kashaki M, Norouzi E, Heidarali S, Mohagheghi P, Soltani M, Karbalaei Hasani H. Is there any correlation between cerebrospinal fluid and serum C-reactive protein in neonates suspected to meningitis? J Kerman Univ Med Sci. 2020;27(5):389-93. doi: 10.22062/jkmu.2020.91471. [Persian].
- 64. Saboute M, Kashaki M, Yavar R, Bordbar A, Khalessi N, Allahqoli L. Prevalence of meningitis among hospitalized neonates with urinary tract infection. Iran J Neonatol. 2020;11(2):66-71. doi: 10.22038/ijn.2020.41257.1677.
- 65. Hemmati N, Nikkhahi F, Javadi A, Eskandarion S, Marashi

- SM. Use of a new multiplex quantitative polymerase chain reaction-based assay for simultaneous detection of *Neisseria meningitidis, Escherichia coli* K1, *Streptococcus agalactiae*, and *Streptococcus pneumoniae*. Iran J Microbiol. 2021;13(4):464-9. doi: 10.18502/ijm.v13i4.6970.
- Mirjalili A, Mollazadeh SH. Molecular epidemiology study of suspected meningitis cases in Tehran and Alborz provinces. J Adv Biomed Sci. 2021;11(3):3976-83. doi: 10.18502/jabs. v11i3.8791.
- Zeighami H, Roudashti S, Bahari S, Haghi F, Hesami N. Frequency of etiological agents of acute bacterial meningitis using culture and polymerase chain reaction assay. New Microbes New Infect. 2021;43:100930. doi: 10.1016/j. nmni.2021.100930.
- 68. Tabatabaie P, Sayahtaheri S, Siadati A, Alizad O. Etiology and neurological complications of bacterial meningitis in 189 patients. Acta Med Iran. 1997;35(1-2):33-8.
- 69. Aletayeb MH, Farajzadeh Sheikh A, Dehdashtian M. Elevenyear study of causes of neonatal bacterial meningitis in Ahvaz, Iran. Pediatr Int. 2010;52(3):463-6. doi: 10.1111/j.1442-200X.2010.03107.x.
- Haghi-Ashtiani MT, Mamishi S, Shayanfar N, Mohammadpour M, Yaghmaei B, Abedini M, et al. Antimicrobial susceptibility profiles associated with bacterial meningitis among children: a referral hospital-based study in Iran. Acta Microbiol Immunol Hung. 2011;58(4):273-8. doi: 10.1556/AMicr.58.2011.4.3.
- 71. Khalessi N, Afsharkhas L. Neonatal meningitis: risk factors, causes, and neurologic complications. Iran J Child Neurol. 2014;8(4):46-50.
- 72. Heydari B, Khalili H, Karimzadeh I, Emadi-Kochak H. Clinical, paraclinical, and antimicrobial resistance features of community-acquired acute bacterial meningitis at a large infectious diseases ward in Tehran, Iran. Iran J Pharm Res. 2016;15(1):347-54.
- 73. Mohsenipour R, Gharib B, Eshaghi H, Rahmani P. Antibiotic susceptibility of bacterial agents causing meningitis in children older than 1 month. Drug Res (Stuttg). 2020;70(4):174-7. doi: 10.1055/a-1112-7006.
- Keshavarz Valian S, Mahmoudi S, Pourakbari B, Banar M, Haghi-Ashtiani MT, Mamishi S. The causative organisms of bacterial meningitis and their antimicrobial resistance profiles in Iranian children in 2011-2016. Infect Disord Drug Targets. 2020;20(2):229-36. doi: 10.2174/187152651966618112313
- Zunt JR, Baldwin KJ. Chronic and subacute meningitis. Continuum (Minneap Minn). 2012;18(6):1290-318. doi: 10.1212/01.Con.0000423848.17276.21.
- Sulaiman T, Salazar L, Hasbun R. Acute versus subacute community-acquired meningitis: analysis of 611 patients. Medicine (Baltimore). 2017;96(36):e7984. doi: 10.1097/ md.00000000000007984.
- Hildebrand J, Aoun M. Chronic meningitis: still a diagnostic challenge. J Neurol. 2003;250(6):653-60. doi: 10.1007/ s00415-003-1101-5.
- 78. Thakur KT, Wilson MR. Chronic Meningitis. Continuum (Minneap Minn). 2018;24(5):1298-326. doi: 10.1212/con.0000000000000664.
- Nguyen DT, Nguyen TL, Olmsted A, Duong TH, Hoang HM, Nguyen LH, et al. Epidemiology of pneumococcal meningitis in sentinel hospital surveillance of Viet Nam, 2015-2018. BMC Infect Dis. 2024;24(1):1179. doi: 10.1186/s12879-024-10065-0.
- 80. Ghotaslou R, Yeganeh-Sefidan F, Salahi-Eshlaqi B, Ebrahimzadeh-Leylabadlo H. Etiology of acute bacterial meningitis in Iran: a systematic review. Acta Med Iran. 2015;53(8):454-61.
- 81. Durand ML, Calderwood SB, Weber DJ, Miller SI, Southwick FS, Caviness VS Jr, et al. Acute bacterial meningitis in adults. A

- review of 493 episodes. N Engl J Med. 1993;328(1):21-8. doi: 10.1056/nejm199301073280104.
- 82. Ali M, Chang BA, Johnson KW, Morris SK. Incidence and aetiology of bacterial meningitis among children aged 1-59 months in South Asia: systematic review and meta-analysis. Vaccine. 2018;36(39):5846-57. doi: 10.1016/j. vaccine.2018.07.037.
- 83. Martin M, Casellas JM, Madhi SA, Urquhart TJ, Delport SD, Ferrero F, et al. Impact of haemophilus influenzae type b conjugate vaccine in South Africa and Argentina. Pediatr Infect Dis J. 2004;23(9):842-7. doi: 10.1097/01. inf.0000137575.82874.0c.
- 84. Rafiei Tabatabaei S, Shamshiri AR, Nasiri MJ, Weinberger DM, Dadashi M, Karimi A. Pneumococcal meningitis in Iran: a systematic review and meta–analysis. J Acute Dis. 2019;8(3):99-105. doi: 10.4103/2221-6189.259108.
- Noguchi T, Nagao M, Yamamoto M, Matsumura Y, Kitano T, Takaori-Kondo A, et al. Staphylococcus epidermidis meningitis in the absence of a neurosurgical device secondary to catheter-related bloodstream infection: a case report and review of the literature. J Med Case Rep. 2018;12(1):106. doi: 10.1186/s13256-018-1646-7.
- 86. Lee PY, Chang WN, Lu CH, Lin MW, Cheng BC, Chien CC, et al. Clinical features and in vitro antimicrobial susceptibilities of community-acquired *Klebsiella pneumoniae* meningitis in Taiwan. J Antimicrob Chemother. 2003;51(4):957-62. doi: 10.1093/jac/dkg158.
- 87. Bhimraj A. Acute community-acquired bacterial meningitis in adults: an evidence-based review. Cleve Clin J Med.

- 2012;79(6):393-400. doi: 10.3949/ccjm.79gr.12003.
- 88. Agier L, Martiny N, Thiongane O, Mueller JE, Paireau J, Watkins ER, et al. Towards understanding the epidemiology of *Neisseria meningitidis* in the African meningitis belt: a multi-disciplinary overview. Int J Infect Dis. 2017;54:103-12. doi: 10.1016/j.ijid.2016.10.032.
- 89. World Health Organization. WHO position paper, meningococcal A conjugate vaccine: updated guidance, February 2015. Vaccine. 2018;36(24):3421-2. doi: 10.1016/j. vaccine.2017.07.063.
- 90. Mehrdadi S. Acute bacterial meningitis: diagnosis, treatment and prevention. J Arch Mil Med. 2019;6(4):e84749. doi: 10.5812/jamm.84749.
- 91. Hasbun R. Progress and challenges in bacterial meningitis: a review. JAMA. 2022;328(21):2147-54. doi: 10.1001/jama.2022.20521.
- 92. van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet. 2021;398(10306):1171-83. doi: 10.1016/s0140-6736(21)00883-7.
- 93. Tunkel AR, van de Beek D, Scheld WM. Acute meningitis. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier; 2014. p. 1097-138.
- 94. Flores-Cordero JM, Amaya-Villar R, Rincón-Ferrari MD, Leal-Noval SR, Garnacho-Montero J, Llanos-Rodríguez AC, et al. Acute community-acquired bacterial meningitis in adults admitted to the intensive care unit: clinical manifestations, management and prognostic factors. Intensive Care Med. 2003;29(11):1967-73. doi: 10.1007/s00134-003-1935-4.