
Introduction
Klebsiella pneumonia, a member of the Enterobacteriaceae 
family, is an opportunistic bacterium capable of causing 
different diseases such as urinary tract infections (UTIs), 
pneumoniae, septicemia, and soft tissue infections, 
particularly in hospitals (1). It accounts for 3%–8% of 
all nosocomial bacterial infections (2). K. pneumoniae 
expresses several virulence factors, including endotoxins, 
siderophores, adhesins, iron-scavenging mechanisms, 
and capsules (3). This is a serious threat to human health, 
making antimicrobial resistance (AMR), a major global 
infection resistant to third-generation cephalosporins 
(4). Health systems currently incur significant financial 
expenditures due to AMR (5). The prevalence and diversity 
of AMR genes make them one of the major challenges 
facing global healthcare systems (5). 

Beta-lactam antibiotics are commonly consumed to 
treat diseases caused by Enterobacteriaceae. However, the 

loss of sensitivity to these antimicrobial agents in Gram-
negative bacteria, particularly Enterobacteriaceae, is 
spreading rapidly worldwide. Resistance to beta-lactams 
is primarily attributed to the production of three types of 
beta-lactamases (BLs), namely, extended-spectrum beta-
lactamase (ESBL), AmpC-type BLs (AmpC-BLs), and 
carbapenemases (6).

ESBLs are a complex, diverse, and quickly evolving 
category of enzymes that pose significant challenges in 
treating patients with both community- and hospital-
acquired infections (7). Most ESBLs are plasmid-mediated. 
Members of the Enterobacteriaceae family can easily 
transfer these plasmids among themselves, leading to the 
accumulation of resistance genes and the production of 
strains with multidrug-resistant plasmids. Isolates that 
produce ESBLs are resistant to several antibiotic classes. 
Unfortunately, plasmids that generate ESBLs are relatively 
stable in the host bacterium (8).
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Abstract
Background: Klebsiella pneumoniae is an opportunistic pathogen that can cause nosocomial 
infections due to its high virulence factors and multiple antimicrobial resistance (AMR) 
mechanisms. This bacterium can produce various beta-lactamases, including extended-spectrum 
beta-lactamase (ESBL) and AmpC. This study aimed to investigate the presence of plasmid AmpC 
and ESBL genes in K. pneumoniae isolates from the clinical samples of patients in Dhi-Qar, Iraq.
Methods: A total of 612 clinical samples were collected from different medical centers and 
laboratories in Dhi-Qar, Iraq, between April 2023 and February 2024. Then, the presence 
of K. pneumoniae in these samples was evaluated using conventional biochemical and 
microbiological methods. ESBL production was assessed phenotypically by the synergy double 
disk (SDD) method. The presence of the blaCTX-M, blaTEM, blaCTX-M-3, blaCMY, and blaSHV genes was 
analyzed using the polymerase chain reaction.
Results: Out of the 612 samples, 180 (29.4%) tested positive for K. pneumoniae. Of these, 40 
isolates (22.2%) were positive in the SDD test and were considered ESBL producers. The blaSHV, 
blaCTX-M-3, blaTEM, and blaCTX-M genes were detected in 8 (20%), 32 (80%), 21 (52.5%), and 22 
(55%) isolates, respectively. The blaCMY gene was not found in any of the K. pneumoniae isolates.
Conclusion: Our study highlights high resistance against third-generation cephalosporins among 
K. pneumoniae isolates. The prevalence of ESBL genes, including blaCTX-M, blaTEM, and blaSHV, 
among these isolates can cause serious challenges in the treatment of bacterial infections. 
Keywords: Klebsiella pneumoniae, AmpC, Beta-Lactamase, Synergy double disk, Extended-
spectrum beta-lactamase
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Based on Ambler classification, ESBL enzymes are 
categorized into two A and D classes. ESBLs, or serine 
beta-lactamases, form the largest group of beta-lactamases 
(9). The most prevalent genes encoding enzymes in class 
A include blaTEM, blaCTX-M, and blaSHV (10). Before the 
2000s, TEM and SHV were the most widespread ESBLs, 
but later, CTX-M became the most frequent worldwide, 
leading to a gradual decline in TEM-type ESBLs. Most 
CTX-M enzymes are more effective on cefotaxime than 
ceftazidime (9). 

AmpC BLs are able to hydrolyze broad-spectrum 
cephalosporins as well as penicillins. AmpC-BLs belong 
to Ambler Class C and can be encoded either by the 
chromosome or plasmids. Plasmid-encoded AmpCs 
(pAmpCs) are widely spread and encoded by different 
genes, among which blaCMY is the most prevalent. The 
pAmpC genes can be disseminated through K. pneumoniae 
and Escherichia coli, the bacteria responsible for diverse 
hospital-acquired infections (11).

Our research attempted to evaluate the presence of two 
types of BLs, ESBL and pAmpC, in K. pneumoniae isolates 
from the clinical samples of patients in Dhi-Qar, Iraq. 

Materials and Methods
Sample Collection and Identification 
In total, 612 samples were gathered from individuals 
suffering from blood septicemia, respiratory tract 
infections, burns, wound infections, and UTIs. The 
samples were gathered from various hospitals in Dhi-Qar, 
Iraq, including Al-Hussein hospital, Al Nasiriya hospital, 
Al Haboubi hospital, Al-Musawi Children’s hospital, Bint 
Al Huda hospital, and medical laboratories in the city of 
Nasiriyah from April 2023 to February 2024. The samples 
were cultivated on MacConkey agar, blood agar, and 
nutrient agar. All culture media were obtained from Merck 
Company (Germany). Morphological characteristics of 
colonies, such as shape, size, margins, and pigmentation, 
were investigated in this study. Grown colonies were 
identified using Gram staining and traditional biochemical 
and microbiological tests, including oxidase, catalase, 
IMViC, sulfur indole motility, and triple sugar iron agar.

Synergy Double Disk Method for the Detection of ESBL 
Isolates
To identify ESBL-producing isolates, ceftazidime- or 
cefotaxime-resistant isolates were evaluated using the SDD 
test, as recommended by CLSI 2023 (12). The ceftazidime 
(CAZ; 30 μg), cefotaxime (CTX; 30 μg), ceftazidime-
clavulanic acid (TZL; 30-10 μg), and cefotaxime-clavulanic 
acid (CEC; 30-10 μg) disks were applied in this method. The 
test isolates were inoculated onto Muller-Hinton agar (Merck, 
Germany) plates, and the disks were placed 3.5 cm from each 
other. The diameter of the no-growth zones around the disks 
was measured after 16 hours of incubation. According to 
CLSI criteria, the isolates were recorded as ESBL producers 
if the diameter of the no-growth zone around ceftazidime-
clavulanic acid or cefotaxime-clavulanic acid (combined 

disks) increased by ≥ 5 mm compared to ceftazidime or 
cefotaxime (individual disks).

DNA Extraction
A manual boiling process was applied to extract DNA 
from K. pneumoniae isolates (13). A single colony from 
MacConkey agar was picked with an inoculation loop 
and cultured into the nutrient broth, then incubated 
for 18 hours at 37 °C. After incubation, 200 μL of the 
cultured media was transferred to a 1.5 mL microtube 
and centrifuged for 5 minutes at 5000 rpm. Afterward, the 
supernatant was discarded, and 200 μL of water was added 
to the bacterial pellet. After pipetting, the suspensions 
were boiled for 10 minutes and then centrifuged for 5 
minutes at 10 000 rpm. The supernatant was collected as 
the template for amplification and stored at -20 °C.

Detection of Extended-Spectrum Beta-Lactamase Genes 
and blaCMY
The test isolates were evaluated for the presence of four 
ESBL genes, including blaTEM, blaCTX-M-3, blaSHV, and 
blaCTX-M, along with the blaCMY gene related to the pAmpC-
BL type. The primer sequences are provided in Table 1. 
The polymerase chain reaction conditions were applied as 
previously described (14-18). 

Statistical Analysis
The χ2 or Fisher’s exact test was applied to analyze 
descriptive data, and a P value of ≤ 0.05 was considered 
statistically significant.

Results
Out of 612 different samples, 180 (29.4%) were positive 
for K. pneumonia, including urine, burn, sputum, wound, 
blood, and pulmonary fluid samples. Details are included 
in Table 2. Of the positive samples, 48.3% (n = 87) and 
51.7% (n = 93) were from females and males, respectively 
(P > 0.05). 

Phenotypic Detection of Extended-Spectrum Beta-
Lactamase-Producing Isolates
AMR was observed against cefotaxime, ceftazidime, 
or both in 139 (77.2%), 117 (65%), and 95 (58%) of K. 
pneumoniae isolates, respectively. After subjecting these 
isolates to the SDD test, 40 (22.2%) were detected as ESBL 
producers.

Detection of Extended-Spectrum Beta-Lactamase Genes 
and blaCMY
In total, eight (20%), 32 (80%), 22 (55%), and 21 (52.5%) 
isolates harbored blaSHV, bla CTX-M-3,

 blaCTX-M, and blaTEM. 
The blaCMY was found in none of the K. pneumoniae 
isolates (Figure 1). Four (10%) isolates did not exhibit any 
of the tested genes. Some isolates harbored multiple ESBL 
genes, with eight (20%) containing two ESBL genes and 
five (12.5%) consisting of three ESBL genes. The frequency 
of ESBL gene profiles is provided in Table 3.
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Discussion
Enterobacteriaceae, especially K. pneumonia, cause 
nosocomial infections. Recently, AMR, due to the presence 
of BL, has increased worldwide, leading to resistance 
against a wide variety of antimicrobial agents (19). The 
prevalence of beta-lactamase producers and related genes 
varies greatly across different regions and from one year 
to another. For the accurate detection of ESBL-producing 
microorganisms, genotypic tests are required in addition 
to phenotypic tests (20).

The results of our study revealed that blaCTX-M-3 and 
blaCTX-M were the most frequent ESBL genes among K. 
pneumoniae isolates, respectively. Multiple studies have 
reported that CTX-M–type ESBLs are probably the most 
common ESBL type worldwide (7). CTX-M has different 
types, among which CTX-M-3 BL is the most common 

ESBL expressed by K. pneumoniae, E. coli, and different 
serotypes of non-typhoid Salmonella (21-23). The universal 
primers of blaCTX-M and specific primers were used for 
blaCTX-M-3 because, in some cases, universal primers cannot 
detect all blaCTX-M-3 genes. Only one isolate was negative 
for blaCTX-M-3 but positive for blaCTX-M, demonstrating that 
approximately 95% of blaCTX-M-positive isolates harbored 
blaCTX-M-3. These isolates may carry other types of blaCTX-M 
simultaneously. 

The frequency rate of blaCTX-M varies in different 
geographic areas of Iraq. Studies conducted in Baghdad 
(24), Najaf (25), and Erbil (26) reported frequencies of 
90%, 88.2%, and 41.1% for blaCTX-M, respectively. Raouf 
et al found a prevalence of 47.4% for blaCTX-M among K. 
pneumoniae isolates of patients with community-acquired 
pneumonia (27). In our study, blaTEM was observed in 52.5% 

Table 1. The Primer Sequences for the Detection of ESBL Genes and blaCMY

Gene Sequences Annealing Temperature (°C) Product Size Reference

blaTEM

F: ATAAAATTCTTGAAGACGAAA
R: GACAGTTACCAATGCTTAATC

56 1080 (14)

blaCTX-M

F: CGATGTGCAGTACCAGTAA
R: TTAGTGACCAGAATCAGCGG

60 585 (15)

blaCTX-M-3

F: CGCTTTGCGATGTGCAG
R: ACCGCGATATCGTTGGT

60 550 (16)

blaCMY

F: ATGATGAAAAAATCGTTATGCT
R: TTATTGCAGCTTTTCAAGAATGCG

60 1140 (17)

blaSHV

F: CACTCAAGGATGTATTGTG
R: TTAGCGTTGCCAGTGCTCG

50 885 (18)

Note. ESBL: Extended-spectrum beta-lactamase.

Table 2. The Number of Klebsiella pneumonia Isolates From Different Clinical Samples

Sample Urine Burn Wound Sputum Blood Pulmonary Fluids

No. (%) 59 (32.8) 8 (4.4) 22 (12.2) 68 (37.8) 13 (7.2) 10 (5.6)

Genus M F M F M F M F M F M F

N (%) 26 (44.1) 33 (55.9) 5 (62.5) 3 (37.5) 10 (45.4) 12 (54.6) 40 (58.8) 28 (41.2) 9 (69.2) 4 (30.8) 3 (30) 7 (70)

Note. M: Male; F: Female; N: Number.

Table 3. The ESBL Gene Profiles Found Among Klebsiella pneumoniae Isolates

Genes
blaSHV

N (%)
blaCTX-M-3

N (%)
blaCTX-M

N (%)
blaTEM

N (%)
blaCMY

N (%)
blaCTX-M-3- blaTEM

N (%)
blaCTX-M-3- blaSHV

N (%)
blaCTX-M-3 or blaCTX-M-blaTEM

N (%)
blaCTX-M-3-blaSHV-blaTEM

N (%)
No Gene

N (%)

Sum 8 (20) 32 (80) 22 (55) 21 (52.5) 0 (0) 4 (10) 1 (2.5) 7 (17.5) 5 (12.5) 4 (10)

Figure 1. PCR Results of ESBL Genes. Note. PCR: Polymerase chain reaction; ESBL: Extended-spectrum beta-lactamase. Wells 1, 8, and 11: Ladder (100 bp); 
Wells 2, 3, and 4: blaCTX-M-3; Wells 5 and 6: blaTEM; Well 10: blaSHV; Wells 12, 13, and 14: blaCTX-M; Wells 7, 9, and 15: Negative isolates
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of ESBL-producing isolates. In some studies performed in 
Iraq, this gene was the most prevalent ESBL gene (24, 26). 
The frequency of blaTEM in Baghdad (24), Erbil (26), and 
Sulaimani (20) was 95%, 64.7%, and 53.7%, respectively. 
blaSHV, another important ESBL gene, was observed in 20% 
of ESBL-producing isolates. Different frequencies ranging 
from 15.8% (27) to 92.85% (20) have been reported in 
other studies. The results of our investigation differed 
from those of some other studies, suggesting that different 
geographical regions may have various prevalence rates 
and types of ESBL genes. In addition, the sample size, type 
of sample, year of sampling, and method used for gene 
detection may have affected the study results.

The findings related to the prevalence of ESBL genes 
outside of Iraq also vary widely. In a study conducted 
by Saisi et al, the most common genes responsible for 
producing ESBLs were CTX-M (100%), TEM (97%), and 
SHV (94%) in Kenya, respectively (28). CTX-M was found 
to be the predominant gene according to studies from 
South America, the UK, Spain, the USA, and numerous 
regions of the Indian subcontinent (29). The blaTEM 
gene was confirmed to be more prevalent than SHV in a 
Chinese investigation (30). 

The presence of more than one BL gene within each 
isolate occurred in 13 ESBL-producing isolates. Notably, 
most isolates had a double or triple combination of 
ESBL genes, which is probably due to their transport 
by a common plasmid. Such plasmids can usually carry 
other resistance genes, leading to resistance against 
other antimicrobial categories. In Tunisia, Alibi et al 
found a triple combination of SHV/TEM/CTX-M (31). 
In Tanzania, Mshana et al reported a combination of 
CTX-M/TEM in 11.96% and SHV/CTX-M in 10.87% of 
the isolates (32). 

Based on the results, the blaCMY gene was not observed 
among cefotaxime- or ceftazidime-resistant isolates. There 
have been limited studies on the worldwide distribution 
of pAmpC-BLs, including blaCMY, compared to the more 
frequently reported carbapenemase- and ESBL-producing 
bacteria (33-35). In general, the lowest frequency was 
found in Europe, including 0.06% in Denmark (36), 2.6% 
in Holland (37), and 11.9% in Germany (38), followed by 
America, with rates ranging from 1.3% in 2016 (37) to 
3.42% in 2019 (39).

However, the prevalence of this type of BL is higher in 
the Middle East and Asia than in the rest of the world, 
especially in Iran (20.50% in 2020) (40), China (31.5% 
in 2015) (41), and Nepal (40.26% in 2020) (42). It was 
impossible to find information on the frequency of blaCMY 
among K. pneumoniae strains isolated from patients in 
Iraq.

Among identified ESBL-producing K. pneumoniae 
isolates, 10% were negative for the investigated genes. 
ESBL production in these isolates may be attributed 
to other ESBL genes, such as blaOXA, or other beta-
lactamase groups, including metallo-beta-lactamase, 
carbapenemase, or other serine beta-lactamases.

Conclusion 
Klebsiella pneumoniae isolates detected in our study 
showed a high level of resistance against third-generation 
cephalosporins. ESBL genes, including blaTEM, blaCTX-M, 
and blaSHV, were frequent among these isolates, which can 
lead to serious challenges in the treatment of bacterial 
infections. The threat posed by this group of AMR bacteria 
to public health should not be underestimated. Extensive 
studies and the development of alternative solutions are 
needed to address this issue.
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