
Background 
Dental caries (tooth decay) is the most frequent oral 
disorder worldwide that has destructive effects on 
the quality of life. According to the World Health 
Organization (WHO) report, it affects 60-90% of children, 
especially in developing countries, although it can affect 
people at any age. Several factors have been reported to 
be involved in the dental caries occurrence. While matrix 
metalloproteinases(MPPs) contribute to degrading the 
organic tissue within the teeth, tooth-adherent bacteria 
are involved in metabolizing sucrose, leading to acid 
production and demineralization of the mineral structure 
of teeth (1-6). Streptococcus mutans is the most prevalent 
bacteria extracted from human cariogenic dental cavities 
(7,8). It mediates the synthesis of exopolysaccharides, 
the main texture of cariogenic biofilms, resulting in 
more bacterial adhesion (9,10). Glucan is found to be 
the most common exopolysaccharides synthesized by 
glucosyltransferase (GTFase) of S. mutans. Therefore, 
GTFase inhibition has been considered as an effective 
strategy to diminish dental biofilm formation and to 
prevent dental caries occurrence (11-13).

Cinnamic acid is an aromatic carboxylic acid compound 
that can be synthesized by deamination of phenylalanine 
and is primarily found in Cinnamomum cassia, Panax 
ginseng, vegetables, grains, and honey (14,15). Figure 1 
illustrates the chemical structure of cinnamic acid achieved 
by the ACD/ChemSketch version 12.01. Cinnamic acid 
derivatives are naturally produced by modifying their 
aromatic ring and the acrylic acid group (16). Several 
pharmaceutical features (i.e., antimicrobial, anticancer, 
and anti-inflammatory) have been reported for cinnamic 
acid and its derivatives (17,18). In addition to antibacterial 
activities of cinnamic acid derivatives, Mojtabavi et al 
(19) demonstrated that the combination of cinnamic acid 
and laccase resulted in approximately 90% reduction in S. 
mutans biofilm formation.

In the present study, we hypothesized that cinnamic 
caid and its derivatives might act as GTFase inhibitors in 
S. mutans. The binding affinity of cinnamic acid and its 
11 derivatives to the GTFase active site were estimated by 
molecular docking analysis. Five of the tested compounds 
were revealed to block the GTFase catalytic site at the 
nanomolar scale. Two-dimensional structures of the tested 
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Abstract
Background: Dental caries is one of the most common oral chronic diseases. Streptococcus mutans is the main 
pathogenic bacteria playing a role in degrading the mineral texture of the teeth. Glucosyltransferase (GTFase) 
of S. mutans is responsible for producing glucan, which is the main exopolysaccharide found in the cariogenic 
biofilms. Further, previous studies have reported that cinnamic acid diminished biofilm formation of S. mutans. 
Therefore, we hypothesized that cinnamic acid and its derivatives might act as GTFase inhibitors.
Methods: The binding affinity of a total of 12 plant-based compounds including cinnamic acid and its 11 
derivatives to the GTFase active site were examined by utilizing the AutoDock tool. The possible interactions 
between top-ranked cinnamic acid derivatives and the residues within the GTFase catalytic site were also taken 
into consideration.
Results: Five of the cinnamic acid derivatives including rosmarinic acid (RA), cynarine, chlorogenic acid (CGA), 
caffeic acid 3-glucoside, and N-p-coumaroyltyramine demonstrated inhibitory effects on GTFase at nanomolar 
concentration. Stabilizing interactions such as π–π stack pairing and pi-charge interactions were detected 
between top-ranked GTFase inhibitors and residues within the enzyme active site.
Conclusions: The present study suggests that RA, cynarine, CGA, caffeic acid 3-glucoside, and N-p-
coumaroyltyramine might have protective effects on dental caries, and therefore, may be considered as anti-
tooth caries compounds.
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compounds in this study are presented in Table 1.

Methods
Structural Preparation
The three-dimensional structure of GTFase was collected 
from the Protein Data Bank (PDB ID: 3AIE) with a criteria 
of X-ray resolution = 2.10 Å, which is available at https://
www.rcsb.org. A total of eight subunits were included 
within the 3AIE file. Chain A, with a total of 844 residues, 
was chosen for computational dockings. It should be 
noted that the molecular energy of GTFase was optimized 
prior to molecular docking analysis by using the Swiss-
PdbViewer version 4.1.0, which is available at http://www.
expasy.org/spdbv (20).

The binding affinity of 12 compounds including 
cinnamic acid and its derivatives to the GTFase catalytic 
site was examined by using the AutoDock software (version 
4.0), which is available at http://autodock.scripps.edu (21). 
The components included rosmarinic acid (RA), cynarine, 
chlorogenic acid (CGA), caffeic acid 3-glucoside, N-p-
Coumaroyltyramine, caffeic acid phenethyl ester (CAPE), 
o-Coumaric acid, caffeic acid (CA), ferulic acid, sinapinic 
acid, p-coumaric acid, and cinnamic acid. In addition, 
Acarbose (PubChem ID: 41774), Maltose (PubChem 
ID: 6255), and WP1066 (PubChem ID: 11210478) were 
considered as standard inhibitors of GTFase (22, 23). All 
ligand structures were firstly achieved as SDF files from the 
public repository for information on chemical substances 
and their biological activities (PubChem database), which 
is available at https://pubchem.ncbi.nlm.nih.gov (24-26). 
Thereafter, the SDF files were converted to PDB formats 
using the web-server of the Computer-Aided Drug Design 
(CADD) Group of the Chemical Biology Laboratory 
(CBL), NCI, and NIH located at the Frederick National 
Laboratory for Cancer Research (FNLCR), formerly NCI-
Frederick (http://cactus.nci.nih.gov/chemical/structure). 
The energy minimization of small molecules was also 
executed before binding energy predictions using the 
HyperChem software (version 8.0.10) (27).

Molecular Docking and Post-docking Analyses
A windows-based computer (with the criteria of installed 
memory: 32 GB, processor: Intel Core i7, and system type: 
64-bit) was used for in silico simulations. The AutoDock 
tool imposes limited flexibility on the protein. It uses an 
accurate free energy force field based on a Lamarckian 
genetic algorithm, leading to a rapid ligand conformation 
prediction within the binding site and estimating the Gibbs 
free binding energy from the following algorithm (28-30):

∆G binding = Intermolecular Energy + Total Internal Energy 
+ Torsional Free Energy - Unbound System’s Energy

The active site of GTFase was considered as a receptor 
for the ligands. The grid box settings in the AutoDock tool 
(included spacing, 0.375 Å; X-dimension, 58; Y-dimension, 
74; Z-dimension, 52; X-center, 190.161; Y-center, 46.104; 
and Z-center, 191.584. A total of 14 amino acids were 
identified to be located within the GTFase catalytic site 
from the Ito and colleagues’ study (22), including Tyr430, 
Leu433, Leu434, Arg475, Asp477, Asn481, Glu515, 
Trp517, Arg540, His587, Asp588, Asp909, Tyr916, and 
Gln960. It is worth mentioning that a total of 50 runs were 
set for each ligand.

For each ligand, the lowest ∆Gbinding within the largest 
cluster of results was considered for post-docking analyses 
including protein-ligand complex imaging and interaction 
mode study. The BIOVIA Discovery Studio Visualizer 
version 19.1.0.18287 (https://discover.3ds.com/discovery-
studio-visualizer-download) was used for visualizing the 
two-dimensional images of interactions between top-
ranked inhibitors and residues within the GTFase active 
site as well as demonstrating the three-dimensional docked 
pose of the top-ranked CA derivatives.

Results
Binding Affinity and Interaction Modes Between GTFase 
and Small Molecules
The Gibbs free energy changes of interactions between 
GTFase and the studied compounds were estimated 
using the AutoDock tool to identify potential GTFase 
inhibitors for combating dental caries. According to the 
results, a total of five cinnamic acid derivatives including 
RA, cynarine, CGA, caffeic acid 3-glucoside, and N-p-
coumaroyltyramine were predicted to bind to the GTFase 
catalytic site at the nanomolar scale (nM); therefore, 
these cinnamic acid derivatives were considered as top-
ranked GTFase inhibitors in the present study. It was 
also estimated that CAPE, o-Coumaric acid, and CA 
could inhibit the GTFase activity at the micromolar scale 
(uM). Moreover, ferulic acid, sinapinic acid, p-coumaric 
acid, and cinnamic acid revealed a dismal affinity to the 
GTFase active site, based on the inhibition constant values 
(Ki) calculated for these molecules that were predicted 
to be at the millimolar (mM) scale. In addition, acarbose 
demonstrated the highest binding affinity to the GTFase 
active site among control inhibitors followed by maltose 
and WP1066. Moreover, the ΔGbinding of GTFase with RA, 
cynarine, and CGA was predicted to be more negative than 
that of WP1066, suggesting that these three compounds 
can attach to the GTFase catalytic site more tightly than 
the WP1066 (Figure 2).

The estimated ∆G binding and Ki values for all tested 
compounds in this study are presented in Table 2. The details 
of energies among top-ranked cinnamic acid derivatives 
and GTFase catalytic site are illustrated in Table 3. The 
interaction modes between top-ranked cinnamic derivatives 

Figure 1. Chemical Structure of cis-Cinnamic Acid.
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Table 1. Two-dimensional Structures of the Tested Ligands in This Study for the Identification of Potential GTFase Inhibitors

Compound Name Sources Two-Dimensional Structure Reference

RA
Rosemary, Perilla frutescens, and Salvia 

miltiorrhiza
(56)

Cynarine Vernonia anthelmintica (57)

 CGA
Apples, artichoke, betel, burdock, carrots, coffee 

beans, eggplants, Eucommia, and grapes
(58)

Caffeic Acid 3-glucoside  American cranberry (59)

N-p-Coumaroyltyramine Crinum biflorum Rottb (60)
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Compound Name Sources Two-Dimensional Structure Reference

 CAPE Propolis and grains (61, 62)

O-Coumaric Acid
Barley, rye, corn, berries, grapes, apples, beans, 

peas, hazelnut, pecan, celery, tomato, garlic, 
flax, mustard, and tea

(63-66)

CA Blueberries, kiwis, plums, cherries, and apples (67)

Ferulic acid
Grains, spinach, parsley, grapes, rhubarb, and 

cereal seeds
(68)

Sinapinic Acid Rhizome of Hydnophytum formicarum (69)

P-Coumaric acid
Barley, rye, corn, berries, grapes, apples, beans, 

peas, hazelnut, pecan, celery, tomato, garlic, 
flax, mustard, and tea

(63-66)

Table 1. continued
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Compound Name Sources Two-Dimensional Structure Reference

Cinnamic acid
Cinnamomum cassia, Panax ginseng, grains, 

and honey
(15)

Note. GTFase: Glucosyltransferase; RA: Rosmarinic acid; CGA: Chlorogenic acid; CAPE: Caffeic acid phenethyl ester; CA: Caffeic acid.

Table 1. continued

and the residues within the GTFase active sites were also 
taken into consideration (Table 4). Accordingly, cynarine 
and N-p-coumaroyltyramine demonstrated the greatest 
number of hydrogen and hydrophobic interactions, 
respectively. It should be noticed that the H-bonds with the 
criteria of distance  >  5 Å were not considered significant, 
and consequently, were removed from Table 4. Figure 3 
illustrates the two-dimensional images of these interactions 
as well as the three-dimensional docked pose of top-
ranked ligands. Figure 4 demonstrates all interactions 
between top-ranked cinnamic acid derivatives and their 
corresponding amino acids in a unique network achieved 
by Cytoscape version 3.8.0 software (https://cytoscape.org/
download.html) (31).

Discussion
Tooth decay is one of the most common chronic diseases 
worldwide (32). It is a multifactorial disorder in which 
matrix metalloproteinases and S. mutans are most 
responsible for degrading the organic and mineral texture 
of the teeth, respectively (33,34). GTFase of S. mutans plays 
an essential role in biofilm formation, leading to more 

bacterial cohesion, acid production, and dental caries (11-
13,35). To discover potential GTFase inhibitors, the binding 
affinity of several plant-based compounds including 
cinnamic acid and its 11 derivatives with GTFase catalytic 
sites were estimated using a molecular docking approach. 
The obtained results predicted that RA, cynarine, CGA, 
caffeic acid 3-glucoside, and N-p-Coumaroyltyramine 
could potentially inhibit the GTFase active site at the 
nanomolar scale. In addition, it was found that three of 
these compounds (i.e., RA, cynarine, and CGA) were more 
tightly bonded to the enzyme compared with WP1066 as 
one of the standard inhibitors of the enzyme.

CA is a water-soluble metabolite that can be synthesized 
in herbs with several beneficial properties such as 
antioxidant, antiviral, antibacterial, antitumorigenic, as 
well as liver and cardiovascular protective effects (36). Sorgi 
et al (37) conducted a study to examine CA’s antibacterial 
and anti-inflammatory properties in macrophage 
response against S. mutans. The authors demonstrated 
that S. mutans displayed an antibacterial effect at the 
half-maximal inhibitory concentration (IC50) = 2.938 mM 
without illustrating cytotoxicity. Moreover, CA led to 
downregulation of nitrite, tumor necrosis factor alpha, 
and prostaglandin E2 through the nuclear factor kappa B 
dependent pathway, demonstrating its anti-inflammatory 
effects within the macrophages. Furthermore, Nakamura 
et al (38) reported that CA solution significantly increased 
the antibacterial effect of 385 nM LED irradiation against 
cariogenic S. mutans biofilms. According to the present 

Figure 2. Comparing the Binding Affinity Between the GTFase Catalytic Site 
and its Top-ranked Inhibitors From Cinnamic Acid Derivatives. Note. FTFase: 
Glucosyltransferase. Acarbose, Maltose, and WP1066 were considered as the 
standard GTFase inhibitors. The x-axis corresponds to the ligand name. The 
y-axis represents the score of ΔG binding in terms of kcal/mol.

Table 2. Estimated Binding Energy and Ki Value of all Compounds Tested in 
This Study After Molecular Docking With GTFase

PubChem ID Ligand Name ΔG binding Ki

5281792 RA -9.10 212.34 nM

6124212 Cynarine -8.97 265.18 nM

1794427 CGA -8.70 419.70 nM

5281759 Caffeic acid 3-glucoside -8.42 669.37 nM

5372945 N-p-Coumaroyltyramine -8.27 864.04 nM

5281787 CAPECAPE -7.92 1.56 uM

637540 O-Coumaric acid -5.01 212.28 uM

689043 CA -4.32 687.05 uM

445858 Ferulic acid -4.01 1.16 mM

637775 Sinapinic acid -3.99 1.18 mM

637542 p-Coumaric acid -3.56 2.47 mM

444539 Cinnamic acid -3.17 4.74 mM

41774 Acarbose (Ctrl) -13.45 138.56 pM

6255 Maltose (Ctrl) -10.94 9.53 nM

11210478 WP1066 (Ctrl) -8.58 511.17 nM

Note. GTFase: Glucosyltransferase; RA: Rosmarinic acid; CGA: Chlorogenic 
acid; CAPE: Caffeic acid phenethyl ester; CA: Caffeic acid.

https://cytoscape.org/download.html
https://cytoscape.org/download.html
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results, caffeic acid 3-glucoside was estimated to bond 
to the GTFase active site at the nanomolar scale (Ki = 
669.37 nM) with a considerable ∆G binding of −8.42 kcal/
mol, while the estimated binding energy between CA 
and GTFase catalytic site was −4.32 kcal/mol, suggesting 
that binding of a sugar moiety to CA has enhanced the 
binding affinity of the compound to GTFase active site. 
Caffeic acid 3-glucoside demonstrated three hydrogens 
one hydrophobic and one electrostatic interaction with the 
Asp477, Glu515, and Asp588 inside the GTFase active site. 
A pi-charge was detected between caffeic acid 3-glucoside 
and Asp588 (5.86 Å). It is worth mentioning that the π-π 
stack pairing, pi-charge, and salt bridges are the most 
stabilizing connections among ligands and proteins (33). 

 RA is a well-known antioxidant compound that exhibits 
antipathogenic activity in plants. It is an ester of CA and 
(R)-(+)-3-(3, 4-dihydroxy phenyl) lactic acid originating 
from L-phenylalanine and L-tyrosine, respectively. Many 
other beneficial properties have also been reported for 
RA including antinociceptive and neuroprotective effects. 
RA is found in a wide range of medicinal plant species 
including Rosmarinus officinalis L. (Lamiaceae), Apiaceae, 
Araliaceae, Cucurbitaceae, Rubiaceae, Plantaginaceae, and 

Polygonaceae (39-44).
Zdarilová et al (45) carried out a study to examine the 

effects of Prunella vulgaris L. extract (PVE) and RA, the 
main compound of PVE, on lipopolysaccharide -induced 
inflammation and oxidative impairment in human 
gingival fibroblasts. They reported that PVE and RA led 
to reduced reactive oxygen species production, resulting 
in down-regulation of interleukin 1b, interleukin 6, tumor 
necrosis factor-a, and inducible nitric oxide synthase. 
The authors demonstrated that PVE and RA could 
significantly reduce lipopolysaccharide-induced damages 
in gingival fibroblasts due to their anti-inflammatory 
properties. Therefore, they may be used for therapeutic 
purposes in periodontal diseases. Further, previous studies 
have reported a link between inflammatory periodontal 
diseases and dental plaque (46).

According to the present results, RA demonstrated 
the highest binding affinity to GTFase active site among 
12 cinnamic acid derivatives. It was predicted that RA 
could attach to the GTFase catalytic site at the nanomolar 
concentration (Ki = 212.34 nM) with a salient ∆G binding 
of −9.10 kcal/mol. It revealed three hydrogen, two 
electrostatic, and one miscellaneous interactions with the 

Table 3. Details of Energies Between Top-ranked Cinnamic Acid Derivatives, Control Inhibitors, and GTFase Catalytic Site Achieved From Molecular Docking 
Analysis

Ligand Name
Final Intermolecular 

Energy (kcal/mol)
Final Total Internal 
Energy (kcal/mol)

Torsional Free Energy 
(kcal/mol)

Unbound System’s 
Energy (kcal/mol)

Estimated Free Energy 
of Binding (kcal/mol)

RA -8.1 -5.72 3.88 -0.84 -9.10

Cynarine -10.97 -4.67 5.37 -1.3 -8.97

CGA -6.53 -6.97 3.58 -1.22 -8.70

N-p-coumaroyltyramine -8.32 -2.64 2.39 -0.3 -8.42

Caffeic acid 3-glucoside -8.2 -4.75 3.58 -0.94 -8.27

Acarbose (Ctrl) -11.33 -11.72 6.56 -3.04 -13.45

Maltose (Ctrl) -8.95 -7.01 3.58 -1.44 -10.94

WP1066 (Ctrl) -8.47 -2.6 1.79 -0.7 -8.58

 Note. GTFase: Glucosyltransferase; RA: Rosmarinic acid; CGA: Chlorogenic acid.

Table 4. Interaction Modes Between Top-ranked Cinnamic Acid Derivatives and Residues Inside the GTFase Active Site

Ligand Name Hydrogen Bond (Distance Å)
Hydrophobic 

Interaction (Distance Å)
Electrostatic: Pi-charge 

(Distance Å)
Miscellaneous 
(Distance Å)

Halogen 
(Distance Å)

RA Asp477 (4.11, 4.37, 4.39); NA
Glu515 (7.65); Asp909 

(6.40)
Tyr916 (3.60) NA

Cynarine
Asp909 (4.23); Asn481 (3.99); Glu509 
(3.83); Ser589 (3.21); Asp593 (3.88)

Tyr916 (6.97); Trp517 
(4.91)

NA NA NA

CGA Asn481 (3.98, 4.73) Trp517 (6.01) Asp909 (7.51) NA NA

N-p-Coumaroyltyramine
Asn481 (4.86); Ala478 (3.53); Gln592 

(4.73, 4.78)
Phe907 (7.06); Tyr916 
(5.55); His587 (7.17)

NA NA NA

Caffeic acid 3-glucoside Asp477 (3.53, 4.31); Glu515 (4.83) Trp517 (6.06) Asp588 (5.86) NA NA

Acarbose (Ctrl)
Gly429 (3.60); Asp477 (4.35); Asp909 
(4.61); Glu515 (4.98); Asn481 (4.81); 

Trp517 (4.69); Gly428 (3.51); Ser518 (3.89)
NA NA NA NA

Maltose (Ctrl) Asn481 (4.04, 4.98); Gln592 (4.62, 4.91) NA NA NA NA

WP1066 (Ctrl) Asp588 (4.29)
Trp517 (5.99); His587 
(5.90); Leu433 (7.12); 

Ala478 (6.31)

Glu515 (7.37); Asp909 
(6.20)

NA His587 (5.72)

Note. GTFase: Glucosyltransferase; RA: Rosmarinic acid; CGA: Chlorogenic acid. Acarbose, Maltose, and WP1066 were considered control inhibitors of the 
enzyme.



Avicenna J Clin Microbiol Infect, Volume 8, Issue 4, 2021 151

Possible GTFase Inhibition by Cinnamic Acid Derivatives

Figure 3. Left: Two-dimensional Images of Interaction Modes Between (a) Rosmarinic Acid, (b) Cynarine, (c) Chlorogenic acid, (d) Caffeic acid 3-glucoside, (e) 
N-p-Coumaroyltyramine, (f) Acarbose, (g) Maltose, (h) WP1066, and Residues Within the GTFase Catalytic Site. Right: Three-dimensional Docked Pose of the 
Corresponding Ligands. Note. GTFase: Glucosyltransferase.
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Asp477, Glu515, Tyr916, and Asp909 within the GTFase 
active site. Further, the interactions among Glu515, 
Asp909, and SA were of pi-charge type.

CGA is an ester of CA and quinic acid with antioxidant 
activity (47,48) which is mainly found in coffee, apples, 
berries, pears, and aubergines (49). Previous studies have 
shown that coffee has exhibited anti GTFase activity in 
S. mutans, leading to dental caries prevention (11,50). 
Moreover, Lin et al (51) triggered a study to examine 
the effect of CGA on tooth decay in rats. The authors 
investigated the antibacterial properties of CGA on S. 
mutans ATCC 10449 and S. sobrinus OMZ65.The obtained 
results revealed that the MIC and MBC of S. mutans were 
2.5 and 7.5 mg/mL, respectively. Therefore, the authors 
suggested that CGA may be considered as a potential 
anti tooth caries compound by inhibiting the growth 
of S. mutans. Hu et al (52) found that CGA elevated the 
osteogenic differentiation of human dental pulp stem 
cells through the Wnt signaling pathway. The authors 
suggested that CGA may be useful for alveolar bone 
damage repairmen in patients with periodontal disease. 
According to the results of the present study, CGA formed 
two hydrogen, one hydrophobic, and one pi-charged 
interactions with Asn481, Trp517, and Asp909 within the 
GTFase active site. It was also estimated that CGA can 
attach to the GTFase catalytic domain at the nanomolar 
concentration (Ki = 419.70 nM) with a ∆G binding of -8.70 
kcal/mol.

N-p-coumaroyltyramine is a phenolic compound 
primarily found in Tribulus terrestris that has demonstrated 
several pharmaceutical properties such as anti-cariogenic 
effect against S. mutans. According to previous studies, 
T. terrestris have significantly reduced the growth, 
adhesion, acid production, as well as synthesis of glucan 
within the S. mutans (53,54). According to the results of 
the present study, N-p-Coumaroyltyramine could block 
the GTFase activity at the nanomolar scale (Ki = 864.04 

nM) with a ∆G binding = -8.27 kcal/mol, suggesting the 
potential anti-tooth decay property of the compound. 
N-p-Coumaroyltyramine demonstrated four hydrogen 
and three hydrophobic interactions with Ala478, Asn481, 
His587, Gln592, Phe907, and Tyr916 inside the GTFase 
catalytic site.

Cynarine is a polar component mainly found in 
the roots of Echinacea angustifolia (55). It revealed a 
considerable binding affinity to the GTFase catalytic site 
(∆G binding = −8.97 kcal/mol) and was found to inhibit the 
enzyme activity at the nanomolar scale (Ki = 265.18 nM). 
Cynarine displayed five hydrogen and two hydrophobic 
interactions with the Asn481, Glu509, Trp517, Ser589, 
Asp593, Asp909, and Tyr916 within the GTFase active site. 
It should be noted that the electrostatic between Trp517 
and cynarine is of pi-pi stack pairing type.

Previous studies have demonstrated that acarbose and 
maltose are potent GTFase inhibitors (22). Moreover, 
Tsurumaki et al (23) reported that WP1066 (PubChem ID: 
11210478), a well-known JAK/STAT3 signaling pathway 
inhibitor, revealed inhibitory effects on ceramide GTFase. 
Therefore, these three compounds were considered as 
control inhibitors of GTFase in this study. Acarbose showed 
a salient binding affinity to the GTFase active site with ∆G 
binding and Ki values of -13.45 kcal/mol and 138.56 picomolar 
(pM), respectively. It demonstrated eight hydrogen bonds 
with the Gly428, Gly429, Asp477, Glu515, Trp517, Ser518, 
Asn481, and Asp909 residues within the GTFase catalytic 
site. In addition, maltose revealed a high binding affinity to 
the GTFase active site. The ∆G binding and Ki values for this 
compound were calculated to be −10.94 kcal/mol and 9.53 
nM, respectively. It illustrated four hydrogen interactions 
with the Asn481 and Gln592 residues within the GTFase 
active site. Further, WP1066 formed one hydrogen, four 
hydrophobic, and two pi-charge interactions with the 
Leu433, Ala478, Glu515, Trp517, His587, Asp588, and 
Asp509 within the GTFase active site. The ∆G binding and Ki 

Figure 4. Possible Connections Between Top-ranked Cinnamic Acid Derivatives and Amino Acids Incorporated Within the GTFase Catalytic Site. Note. GTFase: 
Glucosyltransferase.
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values of WP1066 regarding the enzyme were calculated to 
be −8.58 kcal/mol and 511.17 nM, respectively.

Conclusions
The present study suggests that RA, cynarine, CGA, 
caffeic acid 3-glucoside, and N-p-coumaroyltyramine 
potentially have inhibitory effects on GTFase of S. mutans 
at nanomolar concentration. Therefore, these compounds 
may be helpful for preventing dental caries; however, these 
findings should be confirmed by wet-lab techniques.
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