Logo-ajcmi
Submitted: 18 Dec 2016
Accepted: 15 Mar 2017
ePublished: 09 May 2017
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)

Avicenna J Clin Microbiol Infect. 2018;5(2): 36-40.
doi: 10.34172/ajcmi.2018.07
  Abstract View: 1224
  PDF Download: 1094

Research Article

Detection of Exotoxins and Antimicrobial Susceptibility Pattern in Clinical Pseudomonas aeruginosa Isolates

Somayeh Malek Mohamad 1, Soodabeh Rostami 2, Behnam Zamanzad 3* ORCID logo, Abolfazl Gholipour 1, Fathemeh Drees 4

1 Department of Microbiology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
2 Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
3 Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
4 Department of Biostatistics and Epidemiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
*Corresponding Author: Corresponding author: Behnam Zamanzad, Department of Microbiology, Shahrekord University of Medical Sciences, Faculty of Medicine, Rahmatiyeh, Shahrekord, Iran. Tel/Fax: +98-3833334911, Email: bzamanzad@yahoo.com

Abstract

Background: Pseudomonas aeruginosa is a common opportunistic pathogen that causes nosocomial infection in immunocompromised patients. Among different virulence factors, the type III secretion system (TTSS) is an important agent in virulence and development of antimicrobial resistance in P. aeruginosa. Previous studies have shown that production of TTSS proteins was correlated with increasing virulence and resistance to several antibiotics. In this study, the exotoxins genes (exoU and exoS) and pattern of antimicrobial susceptibility in clinical P. aeruginosa isolates were determined.

Methods: A total of 175 P. aeruginosa isolates were collected from patients hospitalized in Shahrekord and Chamran educational hospitals of Isfahan, Iran (during April to December 2015). Antimicrobial susceptibility test was performed by disk diffusion test. The presence of exotoxin genes was detected using multiplex polymerase chain reaction (PCR) of exoU and exoS genes.

Results: The antibiotic resistance rate was higher than 70% to many antibiotics. The highest rates of resistance (155 and 148) were related to Levofloxacin (88.6%) and Meropenem (84.6%), respectively. The exoU gene was found in 75 (42.9%) isolates and 136 (77.7%) isolates carried the exoS. In addition, 36 (20.6%) of the isolates carried both genes. A statistical significance was observed between the presence of exoU gene and resistance to piperacillin (P = 0.01).

Conclusions: The result of this study showed a high resistance rate to the most antibiotic classes and a specific relationship between the virulence genotype and antimicrobial resistance especially more virulent genotype of exoU+ . In order to prevent the spread of more virulent strains in health care facilities, molecular methods alongside antimicrobial susceptibility tests are suggested.


 
First Name
 
Last Name
 
Email Address
 
Comments
 
Security code


Abstract View: 1225

Your browser does not support the canvas element.


PDF Download: 1094

Your browser does not support the canvas element.