
Background 
Pseudomonas aeruginosa, as a gram-negative bacterium, 
has a wide environmental distribution. It can occasionally 
cause human diseases especially in patients with hidden 
diseases such as cystic fibrosis (CF) (1). This bacterium 
also is one of the most significant causes of nosocomial 
infections in burn intensive care units (2).

Pseudomonas aeruginosa harbors different virulence genes 
including elastase, sialidase, exoenzyme S (exoS), exotoxin 
A (ETA), and exoenzyme U (exoU), which are strongly 
checked by cell-to-cell signaling systems (3). ExoS and 
ETA cause a defect in elongation factor 2 (EF2) that in 
turn contributes to the protein biosynthesis (4). These 
enzymes are secreted by a type III secretion system (T3SS) 
and exhibit an ADP-ribosyltransferase activity (5,6). ExoS 
has a potent phospholipase and GTPase activity that causes 
the rapid lysis of host cells (7,8). ExoU is encoded by exoU 
gene and has been shown to be over 100 times more toxic 
than ExoS (9). P. aeruginosa strains lack the exoU gene, 
thereby limiting the toxicity to the lungs (10,11). On 
the other hand, ExoU has been implicated as an agent 
associated with mortality in pneumonia and septic shock 
(12,13). A relation between exoU and invasive diseases has 
been proposed that causes bloodstream infections (14).

Zinc metalloprotease does an elastolytic activity on 

the lung tissue. Accordingly, pulmonary elastase can be 
effective on different basic materials such as components 
of connective tissue including laminin, elastin, fibronectin, 
and collagen (15).

Pseudomonas aeruginosa secretes the precursor 
of 3 phenazine compounds including pyocyanin, 
1-hydroxyphenazine, and phenazine-1-carboxamide
(16,17). Phenazines induce intracellular oxidative stress
through the intracellular redox cycling of oxygen and
reducing the agents through the production of superoxide
and hydrogen peroxide (17). Phenazines also promote the
growth and survival of P. aeruginosa in the lung tissue of
CF patients (17).

Objectives
This study aimed to evaluate the presence of different 
virulence factors including toxA, phzM, lasB, exoU, and 
exoS genes in P. aeruginosa strains isolated from different 
human and environmental sources by polymerase chain 
reaction (PCR) method.

Methods
Identification of Pseudomonas aeruginosa Isolates
In this study, a total of 100 P. aeruginosa isolates, which 
had been prepared and recognized for a previous published 
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Background: Pseudomonas aeruginosa as a gram-negative bacterium can be detected all around us, as it is 
generally distributed in different environments and can act as a probable cause of human diseases especially 
in immunocompromised patients. This bacterium also is a leading cause of nosocomial infections in burn 
intensive care units.  The aim of this study was to evaluate the presence of some virulence genes in P. aeruginosa 
isolated from different sources. 
Methods: Pseudomonas aeruginosa isolates were evaluated for the presence of virulence factors including toxA, 
phzM, lasB, exoU, exoS genes by polymerase chain reaction (PCR). 
Results: According to our findings, the prevalence of toxA, phzM, lasB, exoU, and exoS virulence genes in 
the isolates originated from human sources was 86%, 16%, 94%, 100%, and 78%, respectively. While, the 
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than their presence in environmental isolates. Hence, it seems this difference may have caused infections in 
humans.
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article, were used (18). All the human samples (27, 13, 
and 10 samples isolated from respiratory and urinary tract 
infections and burns, respectively) and environmental 
samples (32 and 18 samples from soil and surface and 
spring waters, respectively) collected from February to 
September 2016 were cultured on Pseudomonas Cetrimide 
Agar (PCA) (Merck, Germany). P. aeruginosa isolates were 
identified according to the general bacteriological and 
biochemical characteristics. Then isolated bacteria were 
inoculated into TSB containing 25% glycerol and stored 
at -70°C.

DNA Purification and PCR Conditions
From overnight cultures of P. aeruginosa isolates on blood 
agar plates, a few colonies were picked up and chromosomal 
DNA was extracted based on the manufacturers’ 
instructions (Cinnagen, Iran). Quantity and quality of 
extracted DNA were checked using Nanodrop (10000 
V 3.52). Then 16S rRNA, toxA, phzM, lasB, exoU, 
and exoS genes were amplified by PCR method using 
different primer sets (Table 1). Amplification was done 
by an automated thermal cycler (Technet tc512, England) 
according to PCR cycling procedure (Table 1).

For preparation of a 25 μL PCR reaction mixture, 2.5 
μL PCR buf fer, 1.5 μL MgCl2, 1.5 μL deoxyribonucleotide 
triphosphate mixture, 1.5 μL forward and reverse primers, 
0.5 U Taq DNA polymerase, 14.5 μL DDH2O, and 
2 μL extracted genomic DNA were mixed. Then PCR 
procedure was followed as: initial denaturation at 96°C 
for 5 minutes, 30 cycles of PCR amplification including 
denaturation at 94°C for 40 seconds, annealing (according 
to temperatures determined in Table 1), and extension at 
72°C for 40 seconds, and a final extension at 72°C for 7 
minutes. The cycling procedure was repeated in a Block 
assembly 96G thermocycler (Analytic Jena, Germany). 
For prevention of contamination with extraneous nucleic 
acids, the extraction of genomic DNA, preparation of 
reaction mixture, and PCR amplification were done in 
different isolated areas.

Agarose gel electrophoresis was employed for the 
evaluation of the PCR products. To this end, PCR 

amplicons were assessed by mixing the PCR products and 
loading dye (8 and 2 μL, respectively) in wells of 1.5% 
agarose gel (Cinnagen, Iran) including safe stain immersed 
in 0.5×TBE buffer with a voltage difference of 5 v/cm. 
Moreover, PCR products were detected using a 100 bp 
DNA ladder (Cinnagen, Iran). Finally, PCR amplicons 
were visualized in and images were recorded by a GelDoc 
UV gel documentation system (AlphaEase; Alpha 
Innotech, Genetic Technologies, Inc. Miami).

Statistical Analysis
SPSS software version 18.0 was employed for analysis 
of descriptive statistics including frequencies, and cross-
tabulation of microbiological data. A P value less than 0.05 
was considered statistically significant.

Results
Identification of Pseudomonas aeruginosa Isolates
According to general bacteriological and physiological 
characteristics, 52 and 55 isolates of P. aeruginosa were 
confirmed, respectively, from different human and 
environmental samples. The PCR results for amplification 
of 16s rRNA genes are shown in Figure 1.

Detection of Virulence Genes
The most and the lest frequent virulence genes in human 
isolates were exoU (100%) and phzM (16%), but in 
environmental samples were lasB (68%) and phzM (4%), 
respectively (Table 2). The results of amplification of 
some virulence genes in P. aeruginosa isolates are shown in 
Figures 2-6.

Discussion
In pneumonia associated with ventilator devices, P. 
aeruginosa can be the main cause of infection with high 
mortality rate (4). In the Europe and the United States, 
it acts as a general cause of infection in the urinary tract 
(22,23).

Pseudomonas aeruginosa is responsible for pulmonary 
infections, urinary tract infections (UTIs) (24), CF (25), 
infections particularly in burns patients, bed ulcers, and 

Table 1. Oligonucleotide Primers and Preferred PCR Conditions (16, 20, 21)

Genes 5′ to 3′ Sequences Annealing Amplicon size (bp)

16s rRNA
F: GGGGGATCTTCGGACCTCA
R: TCCTTAGAGCTGCCACCCG

58 °C, 30 s 956

phzM
F: ATGGAGAGCGGGATCGACAG
R: ATGCGGGTTTCCATCGGCAG

54°C, 1 min 875

lasB
F: GGAATGAACGAAGCGTTCTCCGAC
R: TGGCGTCGACGAACACCTCG

55°C, 1 min 284

exoU
F: CCAACACATTAGCAGCGAGA
R: TGGGAGTACATTGAGCAGCA

58°C, 30 s 94

exoS
F: CGTCGTGTTCAAGCAGATGGTGCTG
R: CCGAACCGCTTCACCAGGC

55°C, 1 min 444

toxA
F: GACAACGCCCTCAGCATCACCAGC
R: CGCTGGCCCATTCGCTCCAGCGCT 

68°C, 1 min 369
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infections in immunocompromised patients such as cancer 
or AIDS (26). Based on reports from different studies for the 
identification of P. aeruginosa, molecular procedures were 
regarded well than general bacteriological methods (27). 
The strains of P. aeruginosa can be identified by phenotypic 
characteristics with the inclusion of bacteriological and 
physiological traits and some professional procedures such 
as 16s rRNA sequencing for the confirmation of species 
type.

According to the results of this study, 36.18% of human 

1000 bp

500 bp

Figure 1. Electrophoresis of PCR Products for 16S rRNA Gene of Pseudomonas 
aeruginosa Isolates in Agarose Gel. Lane 1: 100 bp DNA molecular weight 
marker; Lanes 2-8: Positive samples of 16S rRNA gene; Lanes 9 and 10: 
Positive and negative controls, respectively.

Figure 2. Electrophoresis of PCR Products for exoS Gene of Pseudomonas 
aeruginosa Isolates in Agarose Gel. Lane 1: 100 bp DNA molecular weight 
marker; Lanes 2-6: Isolates positive for exoS gene; Lanes 7 and 8: Positive and 
negative controls, respectively.

Figure 4. Electrophoresis of PCR Products for lasB Gene of Pseudomonas 
aeruginosa Isolates in Agarose Gel. Lane 1: 100 bp DNA molecular weight 
marker; Lanes 2-7: Isolates positive for lasB gene; Lanes 8 and 9: Positive and 
negative controls, respectively.

Figure 5. Electrophoresis of PCR Products for phzM Gene of Pseudomonas 
aeruginosa Isolates in Agarose Gel. Lane 1: 100 bp DNA molecular weight 
marker; Lanes 2-5: Isolates positive for phzM gene; Lanes 6 and 7: Positive 
and negative controls, respectively.

Figure 3. Electrophoresis of PCR Products for exoU Gene of Pseudomonas 
aeruginosa Isolates in Agarose Gel. Lane 1: 100 bp DNA molecular weight 
marker; Lanes 2-7: Isolates positive for exoU gene; Lanes 8 and 9: Positive and 
negative controls, respectively.
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Table 2. The Comparative Analysis of Virulence Genes in Pseudomonas 
aeruginosa Isolates

Genes Human Isolates (%) Environmental Isolates (%) P Value

exoS 78% 62% < 0.05

exoU 100% 64% < 0.05

lasB 94% 68% < 0.05

phzM 16% 4% < 0.05

toxA 86% 46% < 0.05

500 bp

300 bp

800 bp
1000 bp

500 bp

samples and 10.54% of environmental samples contained 
P. aeruginosa based on routine bacteriological methods. 
Moreover, by PCR amplification of 16S rRNA gene, 
90.9% of human isolates and 96.15% of environmental 
isolates were confirmed as P. aeruginosa.

The frequency of P. aeruginosa isolated from human 
sources in current research was similar to the reports 
from India (29.6%) (28), Georgia (31.5%) (29), Norway, 
Sweden (25.8% to 45.9%) (30), Turkey (16.4%) (31), 
and Brazil (37.3%) (32). In the study of Shi et al on 201 
environmental samples, 56% of them were positive for 
presence of P. aeruginosa (19).

Different pathogenic traits of P. aeruginosa has helped 
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it to establish in different niches and cause infection. 
Adhesions, enzymes, and toxins are these virulence factors. 
P. aeruginosa exotoxins mainly consist of exotoxin A, which 
is an important ADP ribosyltransferase toxin (8). In our 
study, 86% of human isolates of P. aeruginosa and 46% 
of environmental isolates had toxA gene. The prevalence 
of this gene was significantly different between the 
isolates from two sources (P < 0.05). The study of Qin 
et al. displayed that 93.7% of P. aeruginosa isolated from 
CF patients contained toxA gene (27). Lavenir et al also 
reported that 55 (95%) out of 59 isolates of P. aeruginosa 
from various sources harbored toxA gene (33). In addition, 
Shi et al. evaluated 201 isolates of P. aeruginosa from 
drinking water, soil, and river, and found that 93% of 
them had toxA gene (19). Difference in the frequency of 
the toxA gene in this study and that in previous research in 
environmental samples is attributed to the difference in the 
resources from which the samples were taken.

The maximal phospholipase activity of ExoS causes 
the rapid lysis of the host cells (7). ExoS has ADP 
ribosyltransferase (ADPR) activity, along with its role as a 
GTPase activating protein (8). In this study, 78% of human 
isolates and 62% of environmental isolates had exoS gene; 
the difference between two sources in representing the 
exoS gene was statistically significant (P < 0.05). Feltman 
et al demonstrated that 60% of environmental and human 
isolates of P. aeruginosa had exoS (34). Lomholt et al studied 
the isolates of P. aeruginosa originated from various samples 
and showed that all of them (100%) had exoS gene (35). In 
another study, Lanotte et al revealed that 64.7% of isolates 
were positive for exoS gene (36). These differences in the 
frequency of exoS gene could be related to the difference in 
the sources from which the bacteria were isolated. 

ExoS and ExoU greatly contribute to pathogenesis and 
cause great concerns (10). Nonetheless, these proteins are 
not usually secreted by the same strain (10,37). In our 
study, 100% of human isolates and 64% of environmental 
isolates harbored exoU gene, with a statistically significant 
difference (P < 0.05). Strateva et al reported that the 
prevalence of exoU virulence gene in the samples isolated 

500 bp
400 bp
300 bp

Figure 6. Electrophoresis of PCR Products for toxA Gene of Pseudomonas  
aeruginosa Isolates in Agarose Gel. Lanes 1-3: Isolates positive for toxA gene; 
Lanes 4 and 5: Positive and negative controls, respectively; Lane 6: 100 bp 
DNA molecular weight marker.

from nosocomial infections was 45% (38). In the study 
conducted by Shi et al, 9% of 201 environmental isolates 
had exoU gene (19). The difference in the results is tagged 
to the differences in the sampling and geographical area.

The production of different proteases such as alkaline 
protease LasA and LasB, and membrane protease and 
protease IV by P. aeruginosa has been reported in various 
studies (39,40). In our study, 94% of human isolates and 
68% of environmental isolates had lasB gene, and the 
difference between the sources in presenting this virulence 
gene was statistically significant (P < 0.05). In the study 
conducted by Shi et al, 80% of 201 environmental isolates 
had lasB gene (19). When Fazeli and Momtaz evaluated 
102 human isolates of P. aeruginosa, 18 strains (17.6%) 
contained lasB gene (20). Difference between the results of 
our study and those of others could be linked to differences 
in the sampling field.

Human pathogenic P. aeruginosa along with other 
pseudomonads produce some important and biologically 
attractive pigmented secondary metabolites named 
pyocyanins. Thus, produced phenazines and pyocyanins by 
P. aeruginosa and other pseudomonads can act as virulence 
factors (41). In our study, 16% of human isolates and 4% 
of environmental isolates were positive for phzM gene, 
which was a significant difference (P < 0.05). The study 
of Shi et al on 201 environmental isolates of P. aeruginosa 
demonstrated that 84% of them harbored phzM gene 
(19). While, the study of Fazeli and Momtaz showed the 
prevalence of phzM gene as 36.2% in human isolates of P. 
aeruginosa (20).

Conclusions
Results of our study showed that P. aeruginosa isolated 
from environmental samples harbored less frequency of 
virulence factors compared to the human isolates. These 
dissimilarities may be because of the presence of mutagenic 
factors in bacteria, improper use of disinfectants and 
detergents, unsuitable use of medication in human 
infections, and unrestrained use of drugs in animals and 
poultry in today’s industrial life.
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